首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Yang X  Wang X  Li X  Zhang B  Xiao Y  Li D  Xie C  Pei Y 《Plant cell reports》2008,27(4):759-766
In screening for potent antimicrobial proteins (AMPs) from plant seeds, we had purified a heat-stable AMP, LJAMP2, from the seeds of a medicine herb, motherwort (Leonurus japonicus Houtt). In an in vitro assay, the protein can inhibit the growth of both fungi and bacteria. Then a cDNA encoding LJAMP2 was cloned by the rapid amplification of cDNA ends based on the N-terminal amino acid sequence determined. The deduced amino acid sequences of this cDNA show similarity to plant non-specific lipid transfer proteins. Northern blotting assay revealed that this nsLTP-like gene, designated LJAMP2, was expressed in seeds. Overexpression of LJAMP2 in tobacco enhanced resistance to the fungal pathogen Alternaria alternata and the bacterial pathogen Ralstonia solanacearum, significantly, while no visible alteration in plant growth and development. Our data confirm the antifungal and antibacterial function of LJAMP2 from motherwort seeds and suggest the potential of LJAMP2 in improving disease resistance in plants.  相似文献   

2.
Medicinal plants are valuable resources of natural antimicrobial materials. A novel small protein with antimicrobial activities, designated LJAMP1, was purified from the seeds of a medicinal herb, motherwort (Leonurus japonicus Houtt). LJAMP1 is a heat-stable protein with a molecular mass of 7.8 kDa and a determined isoelectric point of 8.2. In vitro assays showed that LJAMP1 inhibits the growth of an array of fungi and bacteria. The hyphal growth inhibition by LJAMP1 was more evident against hyphomycete fungi, such as Alternaria alternata, Cercospora personata, and Aspergillus niger. The N-terminal amino acid sequence of LJAMP1 was determined, and its coding gene was consequently cloned by the rapid amplification of cDNA ends. The gene LJAMP1 has no intron and encodes a polypeptide of 95 amino acids, in which the first 27 residues was deduced as a signal peptide. The mature LJAMP1 shows relatively low identity to plant napin-like storage proteins. Northern blot assays revealed that LJAMP1 is expressed preferentially in seeds. Bioassays in transgenic tobacco demonstrated that that overexpression of LJAMP1 significantly enhanced the resistance of tobacco against not only the fungal pathogen A. alternata but also the bacterial pathogen Ralstonia solanacearum, while no visible alteration in plant growth and development was observed.  相似文献   

3.
Yang X  Li J  Li X  She R  Pei Y 《Peptides》2006,27(12):3122-3128
In screening for potent antimicrobial proteins from plant seeds, a novel heat-stable antimicrobial protein, designated LJAMP2, was purified from seeds of the motherwort (Leonurus japonicus Houtt), a medicine herb, with a procedure involving cation exchange chromatography on a CM FF column, and reverse phase HPLCs on C8 column and C18 column. LJAMP2 exhibited a molecular mass of 6.2 kDa determined. Automated Edman degradation determined the partial N-terminal sequence of LJAMP2 to be NH2-AIGCNTVASKMAPCLPYVTGKGPLGGCCGGVKGLIDAARTTPDRQAVCNCLKTLAKSYSG, which displays homology with plant non-specific lipid transfer proteins (nsLTPs). In vitro bioassays showed that LJAMP2 inhibits the growth of a variety of microbes, including filamentous fungi, bacteria and yeast. The growth of three phytopathogenic fungi, Alternaria brassicae, Botrytis maydis, and Rhizoctonia cerealis, are inhibited at 7.5 μM of LJAMP2, whereas Bacillus subtilis is about 15 μM. The IC50 of LJAMP2 for Aspergillus niger, B. maydis, Fusarium oxysporum, Penicillium digitatum and Saccharomyces cerevisiae are 5.5, 6.1, 9.3, 40.0, and 76.0 μM, respectively.  相似文献   

4.
5.
To date, it has been thought that endophytic fungi in forbs infect the leaves of their hosts most commonly by air‐borne spores (termed “horizontal transmission”). Here, we show that vertical transmission from mother plant to offspring, via seeds, occurs in six forb species (Centaurea cyanus, C. nigra, Papaver rhoeas, Plantago lanceolata, Rumex acetosa, and Senecio vulgaris), suggesting that this may be a widespread phenomenon. Mature seeds were collected from field‐grown plants and endophytes isolated from these, and from subsequent cotyledons and true leaves of seedlings, grown in sterile conditions. Most seeds contain one species of fungus, although the identity of the endophyte differs between plant species. Strong evidence for vertical transmission was found for two endophyte species, Alternaria alternata and Cladosporium sphaerospermum. These fungi were recovered from within seeds, cotyledons, and true leaves, although the plant species they were associated with differed. Vertical transmission appears to be an imperfect process, and germination seems to present a bottleneck for fungal growth. We also found that A. alternata and C. sphaerospermum occur on, and within pollen grains, showing that endophyte transmission can be both within and between plant generations. Fungal growth with the pollen tube is likely to be the way in which endophytes enter the developing seed. The fact that true vertical transmission seems common suggests a more mutualistic association between these fungi and their hosts than has previously been thought, and possession of endophytes by seedling plants could have far‐reaching ecological consequences. Seedlings may have different growth rates and be better protected against herbivores and pathogens, dependent on the fungi that were present in the mother plant. This would represent a novel case of trans‐generational resistance in plants.  相似文献   

6.
BackgroundAmong the potential natural sources of bioactive compounds, those of the macroscopic fungi Phellinus spp. have been identified by previous researches. Phenolic compounds are among the major antioxidant and antimicrobial contributors due to their bioactive properties.AimsThe goal of this study was to determine the total phenolic and flavonoid contents, and its relation with the antioxidant and antifungal activity of methanolic extracts of Phellinus gilvus, Phellinus rimosus and Phellinus badius, respectively.MethodsThe collected and identified organisms of Phellinus spp. were treated with methanol and the generated aqueous extract was analyzed to quantified total phenolic compounds, total flavonoids, radical scavenging activity against DPPH, trolox equivalent antioxidant capacity, and oxygen absorbance capacity. The antifungal property of the extracts was evaluated against Alternaria alternata.ResultsThe content of phenolic compounds was of 49.31, 46.51 and 44.7 mg of gallic acid equivalents/g, for P. gilvus, P. rimosus and P. badius, respectively. The total flavonoid content followed the same pattern with values of 30.58, 28, and 26.48 mg of quercetin equivalents/g for P. gilvus, P. rimosus and P. badius, respectively. The variation on the content of phenolic components was reflected on the antioxidant activity of every organism. The antioxidant activity ranked as follows: P. gilvus > P. rimosus > P. badius. The antifungal effect of the different extracts against A. alternata showed a significant effect, all of them, inhibiting the growth of this pathogen.ConclusionsP. gilvus showed the best potential to inactivate free radicals, being all the tested fungi effective to inhibit A. alternata growth.  相似文献   

7.
To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.  相似文献   

8.
In pursuit of an environmentally benign fungicide alternative, the current study explored the antifungal activity of Chlorella vulgaris extracts against six plant pathogenic fungi (in vitro). The well diffusion agar method was used to investigate the growth inhibition of Fusarium oxysporum, Fusarium sp., Fusarium solani, A. flavus, A. niger, and A. alternata using the three C. vulgaris extracts viz. methanol (CvME), acetone (CvAE), and diethyl ether (CvDE). Different concentrations of CvDE were also investigated against F. oxysporum. The morphological modifications in F. oxysporum treated with CvDE (5 mg/kg) were studied using SEM and the chemical composition of CvDE was also determined by GC–MS analysis. All extracts, with the exception of A. alternata, were found to be effective in inhibiting the growth of plant pathogenic fungi. The CvDE extract, followed by CvME and CvAE, was found to be efficient against tested fungi. The CvDE was most effective against F. oxysporum with a 73.3% growth inhibition. The effects of various CvDE concentrations on F. oxysporum were found to be dosage dependent. The SEM micrograph revealed that CvDE-treated F. oxysporum had substantially less conidia than the control. The CvDE treatment damaged the mycelial structure as well. Major chemical components detected in CvDE were Heptaldehyde (15.7%), Octadecenoic acid, methyl ester (12.6%), Hexadecanoic acid (12%), 3-Decyn-2-Ol (10.98%), (E)-3,7,11,15-tetramethylhexadec-2-ene (9.76%), heptadecane-1,2,3,4,5-pentol (8.7%), Docosane, 4-methyl (7.28%).  相似文献   

9.

Background

The superfamily of glycine-rich proteins (GRPs) corresponds to a large and complex group of plant proteins that may be involved in many developmental and physiological processes such as RNA biogenesis, stress tolerance, pollen hydration and plant-pathogen interactions, showing defensive activity against fungi, bacteria and viruses.

Methods

In this study, the peptides from Coffea canephora seeds were extracted according to the methods of Egorov et al. (2005). The purified peptide was submitted for amino acid sequencing and antimicrobial activity measurement.

Results

The purified peptide with a molecular weight of 7 kDa, named Cc-GRP, was observed to display homology to GRPs. The Cc-GRP–fungi interaction led to morphological changes and membrane permeability, including the formation of pseudohyphae, which were visualized with the aid of SYTOX green dye. Additionally, Cc-GRP also prevented colony formation by yeasts. Antifungal assays of Fusarium oxysporum and Colletotrichum lindemuthianum, observed by light microscopy, showed that the two molds exhibited morphological changes after the growth assay. Cc-GRP coupled to FITC and its subsequent treatment with DAPI revealed the presence of the peptide in the cell wall, cell surface and nucleus of F. oxysporum.

Conclusions and general significance

In this work we purified, characterized and evaluated the in vitro effect on fungi of a new peptide from coffee, named Cc-GRP, which is involved in the plant defense system against pathogens by acting through a membrane permeabilization mechanism and localized in the nuclei of fungal cells. We also showed, for the first time, the intracellular localization of Cc-GRP during antimicrobial assay.  相似文献   

10.
11.
The sugar alcohol mannitol is a carbohydrate with well-documented roles in both metabolism and osmoprotection in plants and fungi. In addition, however, mannitol is an antioxidant, and current research suggests that pathogenic fungi can secrete mannitol into the plant’s extracellular spaces during infection to suppress reactive oxygen-mediated host defenses. In response to pathogen attack, plants have been shown to secrete the normally symplastic enzyme, mannitol dehydrogenase (MTD). Given that MTD converts mannitol to the sugar mannose, extracellular MTD may be an important defense against mannitol-secreting fungal pathogens. Previous work demonstrated that overexpression of MTD in tobacco did, in fact, provide increased resistance to the mannitol-secreting fungal pathogen Alternaria alternata. In the present work we demonstrate that the fungal pathogen Botrytis cinerea also can secrete mannitol, and that overexpression of MTD in zonal geranium (Pelargonium × hortorum) in turn provides increased resistance to B. cinerea. These results are not only an important validation of previous work, but support the idea that MTD-overexpression might be used to engineer a broad variety of plants for resistance to mannitol-secreting fungal pathogens like B. cinerea for which specific resistance is lacking.  相似文献   

12.
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant’s resistance to disease.  相似文献   

13.
Ethanolic extracts of 22 traditionally used Indian medicinal plants were studied for their antimicrobial activity against seven bacteria (Staphylococcus aureus, Salmonella typhimurium, S. paratyphi, S. typhi, E. coli, Shigella dysenteriae and Pseudomonas aeruginosa) and five filamentous fungi (Aspergillus niger, Alternaria alternata, Fusarium chlamydosporum, Rhizoctonia bataticola and Trichoderma viride) and a yeast Candida albicans of clinical origin. Of these, 16 plant extracts showed varied level of antibacterial activity against one or more test bacteria. Similarly antifungal and anticandidal activity was detected among 17 and 9 plant extracts respectively. Broad-spectrum antimicrobial activity (both antibacterial and antifungal) was detected among crude extracts of Bryophyllum pinnatum (leaves), Caesalpinia bonducella (seeds), Delonix regia (flower), Hedychium spicatum (fruits), Mangifera indica (leaves), Murraya coenigii (leaves) and Syzgium cumini (seeds). Similarly extracts of Cichorium intybus (roots), Ficus religiosa (leaves) and Trigonella foenum-graecum (leaves) demonstrated more antibacterial activity with less antifungal activity. On the other hand Pistacia integerrima (stems) and Rheum emodi (roots) demonstrated more antifungal activity with less antibacterial activity.  相似文献   

14.
Recent research has shown the bioprospecting of endophytic fungi from Cupressaceae. Here, we further uncover that the healthy cypress plants such as Cupressus arizonica, Cupressus sempervirens var. cereiformis, and Thuja orientalis host highly bioactive endophytic Alternaria fungal species. Indeed, endophytic Alternaria alternata, Alternaria pellucida, and Alternaria tangelonis were recovered from healthy Cupressaceous trees. Biodiversity and bioactivity of recovered endophytic Alternaria species were a matter of biogeography and host identity. We further extracted such Alternaria’s metabolites and highlighted their significant antiproliferative, growth inhibitory, and antibacterial activities against the model target fungus Pyricularia oryzae and the model pathogenic bacteria Bacillus sp., Erwinia amylovora, and Pseudomonas syringae. In vitro assays also indicated that endophytic Alternaria species significantly inhibited the growth of cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi, and Spencermartinsia viticola. In conclusion, since the recovered Alternaria species were originally reported as pathogenic and allergenic fungi, our findings suggest a possible ecological niche for them inside the foliar tissues of Cupressaceous trees. Moreover, in this study, the significant bioactivities of endophytic Alternaria species in association with Cupressaceae plant family are reported.  相似文献   

15.
Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.  相似文献   

16.
Plant defensins are small (45 to 54 amino acids) positively charged antimicrobial peptides produced by the plant species, which can inhibit the growth of a broad range of fungi at micro-molar concentrations. These basic peptides share a common characteristic three-dimensional folding pattern with one α-helix and three β-sheets that are stabilized by eight disulfide-linked cysteine residues. Instead of using two single-gene constructs, it is beneficial when two effective genes are made into a single fusion gene with one promoter and terminator. In this approach, we have linked two plant defensins namely Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) genes by a linker peptide sequence (occurring in the seeds of Impatiens balsamina) and made into a single-fusion gene construct. We used pET-32a+ vector system to express Tfgd2-RsAFP2 fusion gene with hexahistidine tag in Escherichia coli BL21 (DE3) pLysS cells. Induction of these cells with 1 mM IPTG achieved expression of the fusion protein. The solubilized His6-tagged recombinant fusion protein was purified by immobilized-metal (Ni2+) affinity column chromatography. The final yield of the fusion protein was 500 ng/μL. This method produced biologically active recombinant His6-tagged fusion protein, which exhibited potent antifungal action towards the plant pathogenic fungi (Botrytis cinerea, Fusarium moniliforme, Fusarium oxysporum, Phaeoisariopsis personata and Rhizoctonia solani along with an oomycete pathogen Phytophthora parasitica var nicotianae) at lower concentrations under in vitro conditions. This strategy of combining activity of two defensin genes into a single-fusion gene will definitely be a promising utility for biotechnological applications.  相似文献   

17.
This study investigated the antagonistic effects of Trichoderma harzianum isolate (TRIC8) on mycelial growth, hyphal alteration, conidial germination, germ tube length and seed colonization by the seedborne fungal pathogens Alternaria alternata, Bipolaris cynodontis, Fusarium culmorum and F. oxysporum, the causes of seedling rot in over 30% of sunflowers. The antagonistic effect of TRIC8 on mycelial growth of pathogens was evaluated on dual culture that included two inoculation assays: inoculation of antagonist at 48 h before pathogen (deferred inoculation) and inoculation at the same time with pathogen (simultaneous inoculation). TRIC8 inhibited mycelial growth of the fungal pathogens between 70·67 and 76·87% with the strongest inhibition seen with deferred inoculation. Alterations in hyphae were observed in all pathogens. Conidial germination of F. culmorum was inhibited by most of the fungal pathogens (38·28%) by TRIC8. Inhibition of germ tube length by the antagonist varied from 31·83 to 37·67%. In seed colonization experiments, TRIC8 was applied in combination with each pathogen to seeds of a sunflower genotype that is highly tolerant to downy mildew. Seed death was inhibited by TRIC8 and the antagonist did not allow growth of A. alternata, B. cynodontis and F. culmorum on seeds and inhibited the growth of F. oxysporum at the rate of 58·32%.  相似文献   

18.
Thirty-eight endophytic fungi were isolated from eight Chilean gymnosperms. Isolates were characterized and grouped according to culture characteristics, colony growth, and conidia morphology. Thirteen isolates were identified: Acremonium bacillisporum, A. bactrocephalum, A. strictum, Alternaria alternata, Aureobasidium pullulans, Chaetomium funicola, Cladosporium tenuissimum, Curvularia protuberata, C. tritici, Microsphaeropsis olivacea, Penicillium chrysogenum, P. janczewskii, and Triblidiopycnis pinastri. Malbranchea and Stegonosporium were identified at the genus level. Fourteen isolates, considered to be sterile mycelia, did not fructify in the culture medium. Crude extracts of liquid cultures from endophytes were examined for antibacterial and antifungal activity against bacteria and phytopathogenic fungi using agar diffusion. Antifungal activity against pathogenic fungi was determined by microdilution assays. Extracts of Acremonium bactrocephalum, Microsphaeropsis olivacea, and isolate E-3 inhibited growth of selected pathogenic organisms, indicating they merit further study. This is the first comparative report on the antimicrobial activity of endophytic fungi from Chilean gymnosperms.  相似文献   

19.
The effect of 15 fungi species most frequently inhabiting grapevine shoots on the growth of Phoma negriana was examined. Particular species-components of the fungal community were tested in vitro against the pathogen, using the biotic series method. The majority of fungi species inhibited P. negriana growth and the growth of only 3 species from the community, i.e. Alternaria alternata Keiss., Botrytis cinerea Pers. and Phomopsis viticola, was limited by the pathogen. Fungi Trichoderma were found the most effective against P. negriana. They completely degraded the hyphae and conidia of P. negriana after 20–22 days of growth in two-organism cultures. The summary biotic effects of fungal communities from grapevine were generally favourable to the P. negriana growth and only in one year of study they suppressed the pathogen development.  相似文献   

20.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号