首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell motility and invasion are crucial events for the spread of cancer and, consequently, the metastatic process. Platelet-derived growth factor (PDGF) is not only capable of stimulating the proliferation of SH-SY5Y human neuroblastoma cells, but also their migration and invasion through an extracellular matrix barrier. Experiments using wortmannin and PD98059, specific inhibitors of the phosphatidylinositol 3-kinase (PI3-K) and of the mitogen-activated protein kinases (ERK 1 and 2) signaling, respectively, show that the activation of both pathways is required for the PDGF-induced cell motility responses. We have previously shown that somatostatin inhibits cell division and ERK 1/2 and Ras activity in SH-SY5Y cells. We report here that it is also capable of potently and effectively inhibiting their PDGF-stimulated migration and invasion. The inhibitory effect of somatostatin is sensitive to pertussis toxin. Although somatostatin does not affect PI3-K, it inhibits ERK 1/2 and the small G-protein Rac activation and ruffle formation induced by PDGF. These results indicate that somatostatin can be considered an anti-migratory and anti-invasive agent that acts by inhibiting ERK 1/2 signaling and the PI3-K pathway via the inhibition of Rac in SHSY5Y cells.  相似文献   

2.
The main physiological role of somatostatin (SST) is the control of hormone secretion. Recently, SST has been shown to exert antiproliferative effects on some human tumors via both direct and indirect mechanisms. We have previously found that in the human neuroblastoma cell line SY5Y the SST analogue lanreotide (BIM 23014) inhibited serum-stimulated cell proliferation and MAP kinase activity. Here, we examine the effect of SST on PDGF-induced Ras activation. We found that SST suppressed PDGF-induced Ras activation in a pertussis toxin (PTx)-independent and peroxovanadate-dependent manner. Ras-specific GTPase activating protein (GAP) activities were not altered by SST treatment. On the contrary, PDGF-induced PDGF receptor phosphorylation was decreased by SST in a PTx-independent, peroxovanadate-dependent manner, likely accounting for the SST-mediated inhibition of PDGF-induced Ras activation.  相似文献   

3.
4.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

5.
U Leli  P J Parker  T B Shea 《FEBS letters》1992,297(1-2):91-94
The protein kinase C (PKC) family participates in a ubiquitous cell signalling system utilizing increased turnover of phosphoinositides. Because down-regulation of total PKC activity has been implicated in the acquisition of a morphologically differentiated phenotype in SH-SY5Y neuroblastoma cells, we aimed to identify the specific PKC isoforms in this process. Here we report that intracellular delivery of PKC-alpha and -epsilon, but not -beta, -gamma or -delta isoform-specific antibodies is sufficient to induce acquisition of a morphologically differentiated phenotype in SH-SY5Y neuroblastoma cells.  相似文献   

6.
In previous studies we have showed that somatostatin (SST) inhibits cell division, mitogen-activated protein (MAP) kinase and Ras activity in the human neuroblastoma cell line SY5Y. In the present study, we have assessed the role of a series of SST analogs, three of which were selective for SSTR1, SSTR2 or SSTR5, in these cellular events. All the analogs inhibited forskolin-induced cAMP accumulation. Selective stimulation of SSTR1 or SSTR2 but not of SSTR5 inhibited platelet-derived growth factor (PDGF)-induced [(3)H]thymidine incorporation. The three analogs inhibited PDGF-stimulated MAP kinase activity, at least at an early time. In contrast, none of the analogs used individually was able to inhibit PDGF-stimulated Ras activity. A combined stimulation of SSTR2 and SSTR5 was necessary to obtain a significant inhibitory effect, suggesting the possibility of receptor heterodimerization. These results indicate that SST inhibition of Ras and MAP kinase activities takes place via different pathways and that SST inhibition of PDGF-induced cell proliferation occurs via a Ras-independent pathway.  相似文献   

7.
Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALK(WT)), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALK(WT) and ALK(F1174L) receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALK(WT) whereas both ALK(WT) and ALK(F1174L) were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALK(WT). We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization.  相似文献   

8.
9.
Sodium butyrate, a new potential therapeutic drug, improves the efficacy of chemo- and immunotherapy of cancer under unknown mechanisms. A novel gene pp3501 is significantly induced in SH-SY5Y neuroblastoma cells upon sodium butyrate treatment. Therefore, this study has cloned pp3501 cDNA by RT-PCR and generated its recombinant fusion protein and anti-serum subsequently. The pp3501 protein localized mainly in the nucleus, as detected by immunocytochemistry and the expression of pp3501-EGFP fusion protein. pp3501 inhibited the proliferation of SH-SY5Y cells, arrested the cell cycle at G1 phase, and sensitized the SH-SY5Y cells to sodium butyrate treatment. These results provide a new mechanism of sodium butyrate inhibiting cancer cell proliferation as well as a new avenue for the future research on the functions of pp3501.  相似文献   

10.
The actions of tumor promoters on the coupling of muscarinic receptors to the hydrolysis of inositol lipids and the generation of Ca2+ signals were examined in the human neuroblastoma SH-SY5Y cell line. Pretreatment of SH-SY5Y cells with 50 nM 12-O-tetradecanoylphorbol 13-acetate (TPA) for 5 days resulted in neuronal differentiation, a 28% decrease in both N-[3H]methylscopolamine and [3H]-scopolamine binding, and a significantly larger reduction (48%) in agonist-stimulated 3H-inositol phosphate generation. Whereas mezerein could mimic the effects produced by TPA, the biologically inactive 4 alpha-phorbol 12,13-didecanoate was without effect on both antagonist binding and agonist-stimulated phosphoinositide (PPI) turnover. A decline (approximately 50%) in the agonist-mediated rise in cytoplasmic Ca2+ and a substantial loss of protein kinase C activity also were observed following pretreatment with TPA or mezerein. The ability of fluoride, an agent capable of direct activation of guanine nucleotide binding proteins, to stimulate 3H-inositol phosphate release was significantly reduced in SH-SY5Y cells treated with these agents. Furthermore, pretreatment of SH-SY5Y neuroblastoma cells with TPA or mezerein impaired 3H-inositol phosphate formation induced by the addition of either guanosine 5'-O-(3-thiotriphosphate) or carbamylcholine to digitonin-permeabilized cells, but not that elicited by the addition of 2 mM CaCl2. Although cells cultured in the presence of serum-free media also exhibited neuronal differentiation, no significant alteration in either muscarinic receptor number or agonist-stimulated PPI hydrolysis was observed. The results suggest that TPA and mezerein decrease agonist-stimulated PPI hydrolysis and Ca2+ signaling in SH-SY5Y cells not only by a reduction in muscarinic receptor number but also through an inhibition of guanine nucleotide-stimulated PPI turnover.  相似文献   

11.
12.
The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. [3H]Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, [3H]Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.  相似文献   

13.
The homing of hemopoietic stem cells to the bone marrow is mediated by specific interactions occurring between CXCR4, which is expressed on hemopoietic stem cells, and its ligand, stromal cell-derived factor-1 (SDF-1), a CXC chemokine secreted by bone marrow stromal cells. In the present study we evaluated the possibility that neuroblastoma cells use a mechanism similar to that used by hemopoietic stem cells to home to the bone marrow and adhere to bone marrow stromal cells. Our study suggests that CXCR4 expression may be a general characteristic of neuroblastoma cells. SH-SY5Y neuroblastoma cells express not only CXCR4, but also its ligand, SDF-1. CXCR4 expression on SH-SY5Y neuroblastoma cells is tightly regulated by tumor cell-derived SDF-1, as demonstrated by the ability of neutralizing Abs against human SDF-1alpha to up-regulate CXCR4 expression on the tumor cells. The reduction in CXCR4 expression following short term exposure to recombinant human SDF-1alpha can be recovered as a result of de novo receptor synthesis. Recombinant human SDF-1alpha induces the migration of CXCR4-expressing SH-SY5Y neuroblastoma cells in CXCR4- and heterotrimeric G protein-dependent manners. Furthermore, SH-SY5Y cells interact at multiple levels with bone marrow components, as evidenced by the fact that bone marrow-derived constituents promote SH-SY5Y cell migration, adhesion to bone marrow stromal cells, and proliferation. These results suggest that SH-SY5Y neuroblastoma cells are equipped with adequate machinery to support their homing to the bone marrow. Therefore, the ability of neuroblastoma tumors to preferentially form metastases in the bone marrow may be influenced by a set of complex CXCR4-SDF-1 interactions.  相似文献   

14.
The study investigated the effect of taurine on cell viability and neurotrophic gene expression in arsenite-treated human neuroblastoma SH-SY5Y cells. Arsenite-induced intracellular reactive oxygen species (ROS) and interrupted cell cycle in SH-SY5Y cells. In addition, arsenite reduced mitochondria membrane potential (MMP) and decreased neurotrophic gene expressions such as n-myc downstream-regulated gene 4 (NDRG-4), brain-derived neurotrophic factor (BDNF) and sirtuin-1 (SIRT-1) in SH-SY5Y cells. In parallel, taurine prevented cell cycle, restored MMP and reduced the intracellular ROS level, and taurine recovered NDRG-4, BDNF and SIRT-1 gene expressions in arsenite-treated SH-SY5Y cells while taurine alone has no effect on these parameters.  相似文献   

15.
The muscarinic receptor stimulated mobilisation of calcium ions in SH-SY5Y neuroblastoma cells was measured as a function on carbachol and atropine concentrations. The combined application of this pair of muscarinic agonist and antagonist yielded a set of bell-shaped dose-response curves. In the presence of atropine the cell responses were smaller and the up-going phase of these relationships was shifted towards higher agonist concentration, while the down-going phase of these curves was not influenced by the antagonist. These results pointed to a similar mechanism of the receptor inhibition at high carbachol (agonist) concentrations and by atropine (antagonist).  相似文献   

16.
The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc mRNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC8) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC8 it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.  相似文献   

17.
Endogenous expression of nNOS protein in several neuronal cell lines   总被引:3,自引:0,他引:3  
Several neuronal cell lines were screened for endogenous expression of neuronal nitric oxide synthase (nNOS) protein using Western blot analysis. Detectable levels of the nNOS protein were evident in the SK-N-SH, SH-SY5Y, and N1E-115 neuroblastoma cell lines, as well as the NG108-15 neuroblastoma x glioma hybrid. Only trace amounts were visible in Neuro2A human neuroblastoma cells. The presence of endogenously expressed nNOS in these cells may allow for the study of the interaction between nNOS and the endogenous receptor systems expressed in the same cells.  相似文献   

18.
19.
Insulin-like growth factor-II (IGF-II) is highly expressed in fetal tissues and may act as an autocrine growth factor during early embryogenesis. The SH-SY5Y human neuroblastoma cell line also expresses IGF-II and its receptors and responds to exogenous IGF-II with increased DNA synthesis, cell division, and neuritic outgrowth. For this study, we tested the hypothesis that IGF-II mediates autocrine growth of SH-SY5Y cells in serum-free media. SH-SY5Y cells plated at high densities proliferated in serum-free media, whereas sparsely plated cells did not. IGF-II mRNA levels increased within 24 hours of serum deprivation and were associated with increased immunoreactive IGF-II protein. Exogenous addition of IGF-II increased 3H-TdR incorporation and cell number in a dose- and time-dependent fashion. By nuclear labelling experiments using 5-Bromo-2′ deoxyuridine (BrdU), we detected a twofold higher percentage of S phase nuclei after a 24-hour incubation in IGF-II. Treatment of SH-SY5Y cells with anti-IGF-II antibodies in serum-free media inhibited cell proliferation, and this inhibition was partially overcome by the addition of increasing concentrations of IGF-II. Collectively, our results indicate that IGF-II mediates an autocrine growth mechanism in SH-SY5Y cells that is associated with increased IGF-II expression. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Abstract: A decrease in protein kinase C activity caused either by treatment with inhibitors, such as staurosporine or H-7, or by prolonged exposure to phorbol diesters has been proposed to be involved in the early events of SH-SY5Y neuroblastoma cell differentiation. Because eight distinct isoforms of protein kinase C with discrete subcellular and tissue distributions have been described, we determined which isoforms are present in SH-SY5Y cells and studied their modifications during differentiation. The α, β, δ, and ɛ isoforms were present in SH-SY5Y cells, as well as in rat brain. Protein kinase C-α and -β1 were the most abundant isoforms in SH-SY5Y cells, and immunoreactive protein kinase C-δ and -ɛ were present in much smaller amounts than in rat brain. Subcellular fractionation and immunocytochemistry demonstrated that all four isoforms are distributed bimodally in the cytoplasm and the membranes. Immunocytochemical analysis showed that the α isoform is associated predominantly with the plasma membrane and the processes extended during treatment with 12-tetradecanoyl-13-acetyl-β-phorbol or staurosporine, and that protein kinase C-ɛ is predominantly membrane-bound. Its localization did not change during differentiation. Western blots of total SH-SY5Y cell extracts and of subcellular fractions probed with isoform-specific polyclonal antibodies showed that when SH-SY5Y cells acquired a morphologically differentiated phenotype, protein kinase C-α and -ɛ decreased, and protein kinase C-β1, did not change. These data suggest distinct roles for the different protein kinase C isoforms during neuronal differentiation, as well as possible involvement of protein kinase α and ɛ in neuritogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号