首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Previously, we reported that the consecutive administration of lipopolysaccharide (LPS) into LPS-sensitized mice for the generalized Shwartzman reaction (GSR) induced systemic injury of vascular endothelial cells. The aim of this study was to investigate the participation of vascular adhesion molecules in the vascular endothelial injury of GSR. The administration of anti-E-selectin antibody in GSR-induced mice resulted in massive apoptosis of vascular endothelial cells and congestion in blood vessels. Further, marked hemorrhage was found in the pulmonary alveoli of those mice. GSR, especially lung injury, was definitely exacerbated by the administration of anti-E-selectin antibody. On the other hand, the administration of anti-VCAM-1 antibody did not induce such injury of vascular endothelial cells. The possible role of E-selectin in the exacerbation of vascular endothelial injury in GSR is discussed.  相似文献   

2.
It has been shown that the genesis of atherosclerotic lesions is resulted from the injury of vascular endothelial cells and the cell damage is triggered by oxygen radicals generated from various tissues. Human vascular endothelial cells can survive and proliferate depending on growth factors such as VEGF or basic FGF and are induced apoptosis by the deprivation of growth factor or serum. It was found that type 1 IFN inhibits the growth factor deprived cell death of human aortic endothelial cells (HAEC) and protects the cells from chemically induced oxidative cytotoxicity. The anti‐apoptotic effects of type 1 IFN were certified by flow cytometry using annexin‐V‐FITC/PI double staining and cell cycle analysis, fluorescence microscopy using Hoechst33342 and PI, colorimetric assay for caspase‐3 activity, p53 and bax mRNA expressions, and cell counts. It was considered that IFN‐β inhibits the executive late stage apoptosis from the results of annexin‐V‐FITC/PI double staining and the inhibition of caspase‐3 activity, and that the anti‐apoptotic effect might be owing to the direct inhibition of the apoptotic pathway mediated by p53 from the transient down‐regulation of bax mRNA expression. Whereas, type 1 IFN protected the cells from the oxidative cytotoxicity induced by tertiary butylhydroperoxide (TBH) under the presence of Ca2+. The effects of IFN‐β is more potent inhibitor of cell death than IFN‐α. These results indicate that type 1 IFN, especially IFN‐β may be useful for the diseases with vascular endothelium damage such as atherosclerosis or restenosis after angioplasty as a medical treatment or a prophylactic. J. Cell. Biochem. 113: 3823–3834, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Localization of apoptotic cells by administration of lipopolysaccharide into mice was studied by using the in situ specific labeling of fragmented DNA. This method clearly stained the nuclei of thymocytes at the cortex of the thymus. The nuclei of cells in the bone marrow and in the spleen were also positively stained. It was suggested that the cortex in the thymus is where the LPS-induced programmed cell death occurs.  相似文献   

4.
Bacterial lipopolysaccharide (LPS) is an important mediator of inflammation and a potent inducer of endothelial cell damage and apoptosis. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the active ingredients produced by the traditional Chinese herb, Radix Bupleuri, against LPS-induced apoptosis in human umbilical endothelial cells (HUVECs). LPS triggered caspase-3 activation, which was found to be important in LPS-induced HUVEC apoptosis. Inhibition of caspase-3 also inhibited LPS-induced degradation of focal adhesion kinase (FAK), indicating that caspase-3 is important in LPS-mediated FAK degradation as well as in apoptosis in HUVECs. SSc significantly inhibited LPS-induced apoptotic cell death in HUVECs through the selective suppression of caspase-3. SSc was also shown to rescue LPS-induced FAK degradation and other cell adhesion signals. Furthermore, the protective effects of SSc against LPS-induced apoptosis were abolished upon pretreatment with a FAK inhibitor, highlighting the importance of FAK in SSc activity. Taken together, these results show that SSc efficiently inhibited LPS-induced apoptotic cell death via inhibition of caspase-3 activation and caspase-3-mediated-FAK degradation. Therefore, SSc represents a promising therapeutic candidate for the treatment of vascular endothelial cell injury and cellular dysfunction.  相似文献   

5.
Optimal vascular homeostasis requires efficient control of both proliferation and elimination of vascular endothelial cells. Programmed cell death, or apoptosis, is the main mechanism controlling cell elimination, and it is an essential component of vascular formation. Human vascular endothelial cells die in vitro, if prevented from obligatory survival factors like growth factors or attachment and cell spreading, but very little is known about the mechanisms controlling endothelial cell elimination. Signaling from the extracellular matrix affects the behavior and functions of human umbilical vein endothelial cells (HUVECs), and we have recently demonstrated the beneficial effects of plating on the reconstituted extracellular matrix Matrigel™, on the inducible nitric oxide production of freshly isolated HUVECs. In this work we observed that cultured HUVECs formed typical capillary-like structures on Matrigel, but unexpectedly, after 24–48 hours their viability was gradually lost. Viability was measured with an assay based on mitochondrial reduction of reagent XTT. No decrease in viability was seen in freshly isolated HUVECs or in cultured fibroblasts during this time. It is known that cells often turn into apoptosis if they receive conflicting information from their surroundings, and apparently signaling from Matrigel to HUVECs, while at their in vitro proliferating phenotype, resulted in launching of the apoptotic machinery. Thus, proliferating and differentiated phenotypes of endothelial cells seemed to have different sensitivity to signals that induce apoptosis. J. Cell. Physiol. 176:92–98, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1–40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca2 + homeostasis due to the release of Ca2 + from this intracellular store. Finally, Aβ1–40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1–40 concomitantly with caspase-12 activation. Furthermore, Aβ1–40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1–40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.  相似文献   

7.
8.
Induction of endothelial apoptosis by 4-hydroxyhexenal.   总被引:1,自引:0,他引:1  
Lipid peroxidation and its products such as 4-hydroxy-2-nonenal (HNE) and 4-hydroxyhexenal (HHE) are known to affect redox balance during aging and various degenerative processes, including vascular dysfunction. Deterioration of the endothelial cells that line the vascular wall is known to be an underlying cause of vascular dysfunction. At present, little is known about the mechanism by which HHE induces endothelial cell death (i.e. apoptosis), although HNE-induced apoptotic cell death has been reported. The aim of this study was to determine whether apoptosis induced by HHE in endothelial cells involves peroxynitrite (ONOO(-)). Our results show that in endothelial cells HHE triggers apoptotic cell death by inducing apoptotic Bax coupled with a decrease in anti-apoptotic Bcl-2. Results show that HHE induces reactive oxygen species (ROS), nitric oxide, and ONOO(-) generation, leading to redox imbalance. Furthermore, the antioxidant N-acetyl cysteine, ROS scavenger, and penicillamine, an ONOO(-) scavenger, were found to block HHE-mediated apoptosis. We used confocal laser microscopy to estimate the ability of these inhibitors to attenuate HHE-induced intracellular ONOO(-) levels thus confirming the oxidative mediation of apoptosis in endothelial cells. These findings strongly suggest that accumulated HHE triggers reactive species-mediated endothelial apoptosis, leading to vascular dysfunction as well as vascular aging. During aging, increased lipid peroxidation and its associated production of HHE may exacerbate the weakened redox balance, leading to various chronic degenerative processes including vascular dysfunction.  相似文献   

9.
Objective. Cell death is generally classified into two large categories: apoptosis, which represents active, physiological programmed cell death, and necrosis, which represents passive cell death without underlying regulatory mechanisms. Apoptosis plays an important role in tissue homeostasis and its role in endothelium integrity can be influenced by the functional status of endothelial cells. Homocysteine, a sulfated amino-acid product of methionine demethylation, is an independent risk factor for vascular disease (arterial and venous thombosis). Our goal was to investigate the thiol-derivatives effect on the endothelial cell apoptosis. Methods. Three parameters were measured: mitochondrial membrane potential using DiOC6(3) as the probe, DEVDase activation, and phosphatidylserine exposure on the cell surface with fluorosceinated annexin V labeling which allows apoptosis to be distinguished from necrosis. Results. Homocysteine-thiolactone induced endothelial cell apoptosis in a concentration-dependent manner (range: 50–200 M), independently of the caspase pathway. Only homocysteine-thiolactone, among the thiol derivatives tested, induced apoptosis. Apoptosis was not influenced by the serum concentration in culture medium, suggesting that the observed apoptotic process could occur in vivo. None of the inhibitors used (e.g., leupeptin, fumosinin Bl, catalase, or z-VAD-fmk) was able to prevent homocysteine-induced apoptosis of vascular endothelial cells. Conclusion. The apoptosis of vascular endothelial cells induced by high concentration of homocysteine-thiolactone might be one step atherosclerotic cardiovascular disease, and contribute to its complication.  相似文献   

10.
Continuous beta blockade stimulates deposition of collagen in the pulmonary alveolar interstitium of adult rats. It also causes changes to the capillary endothelial cell compartment reminiscent of programmed cell death. To test whether beta blockade results in endothelial cell apoptosis, cultures of capillary endothelial cells were treated with both a wide-spectrum beta blocker and a beta-2-specific antagonist. Apoptosis was measured in these cultures using both terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling and annexin-V assays. Both forms of beta blockade stimulated programmed cell death in these cultures. To test whether the apoptotic effect of beta blockade was related to interstitial collagen deposition, capillary endothelial cells were cocultured with beta-blocked pulmonary fibroblast monolayers. Cocultured endothelial cells were substantially protected from apoptosis after beta blockade; coculture over plain tissue culture plastic or over exogenous collagen films had no effect on programmed cell death in endothelial cells. These results suggest that both pulmonary endothelial and interstitial cells are vulnerable to injury from beta blockade but that paracrine interactions between these cells may protect the peripheral lung from substantive damage.  相似文献   

11.
Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling.  相似文献   

12.
Cytomegalovirus (CMV) is associated with several lymphocyte dysfunctions, but the precise mechanisms of the dysfunctions are still unclear. To elucidate the mechanisms, a cell cycle-DNA content analysis was performed on splenic T cells of murine CMV (MCMV)-infected BALB/c mice. T cells from mice infected with 3 x 10(3) PFU of MCMV contained a higher percentage of hypodiploid nuclei after 12 or 24 h of culture than those from naive mice. T cells from infected mice also contained a larger amount of fragmented DNA. Taken together, these results suggested that infection with MCMV induced the apoptotic cell death of T cells. This induction of apoptosis accounted for the dysfunction of lymphocytes, at least partially. Flow cytometric analysis showed that T cells as well as B cells from MCMV-infected mice expressed an augmented level of Fas antigen, an apoptosis-associated cell surface molecule, which might be the cause of the apoptosis of cells. T cells from MCMV-infected C57BL/6-lpr/lpr mice with mutations at the lpr/fas locus, however, also showed a substantial level of apoptosis, which was reproducibly lower than that seen in C57BL/6 mice. Therefore, it was suggested that the Fas-mediated pathway contributed to but was not sufficient for the induction of apoptosis and that mechanisms other than the Fas-associated pathway were also involved in the induction of apoptosis.  相似文献   

13.
Yang H  Ren Q  Zhang Z 《FEMS yeast research》2006,6(8):1254-1263
When starved of essential nutrients, yeast cells cease mitotic division and enter an alternative state called the 'stationary phase'. In this paper, we report that stationary cells enter two major pathways: meiosis and apoptosis. Using transmission electron microscopy, five types of cell were identified in the stationary phase: (1) cells with chromosome condensed nuclei; (2) cells with normal, homogeneously stained nuclei; (3) sporulated cells; (4) apoptotic cells, in which chromatin, but not individual chromosomes, was condensed; and (5) dead cells, in which nuclei and cytoplasm were degraded. Further evidence using live cell imaging and mutation analysis suggested that cells with condensed chromosomes underwent meiosis, whereas chromatin condensed cells underwent apoptotic cell death. Cells with homogeneous nuclei are believed to be in the true resting state and undergo cell death when starvation continues. Chromosome or chromatin condensation may serve as a hallmark of life or death for stationary cells.  相似文献   

14.
Osteoprotegerin (OPG) is a key regulator of osteoclastogenesis during the progression of periodontitis. Recent reports suggest that osteoprotegerin may also prevent arterial calcification and contribute to endothelial cell survival. To determine whether the vascular functions of osteoprotegerin are involved in periodontitis, we examined whether osteoprotegerin contributed to the survival of endothelial cells damaged by Porphyromonas gingivalis cysteine proteinases (gingipains). Gingipain proteinases cleave a broad range of host proteins, and are important virulence factors of P. gingivalis, a major causative bacterium of adult periodontitis. Human microvascular endothelial cells (HMVEC) were exposed to activated gingipain extracts from P. gingivalis 381, with and without pretreatment with osteoprotegerin. Cell viability was quantified by the tetrazolium (WST-8) reduction assay, and apoptosis was examined using Hoechst 33342 nuclear staining. After 16 h of treatment with activated gingipain extracts, HMVEC showed near-complete detachment from the tissue culture dish, and apoptosis was evident by 24 h. Pretreatment of HMVEC with osteoprotegerin reduced the extent of both cellular detachment and apoptotic cell death. Our results indicated that osteoprotegerin pretreatment protected HMVEC against detachment and apoptotic cell death induced by gingipain-active bacterial cell extracts. These results also suggest that osteoprotegerin may function as a survival factor for endothelial cells during periodontitis.  相似文献   

15.
Neovascularization is an essential process in tumor development, it is conceivable that anti-angiogenic treatment may block tumor growth. In angiogenesis, nitric oxide (NO) is an important factor which mediates vascular endothelial cell growth and migration. beta-Lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho-[1,2-b]pyran-5,6-dione), a natural product extracted from the lapacho tree (Tabebuia avellanedae), has been demonstrated to possess anti-cancer and anti-viral effects. Whether beta-lapachone can induce endothelial cell death or has an anti-angiogenic effect is still an enigma. We investigated the in vitro effect of beta-lapachone on endothelial cells, including human vascular endothelial cell line, EAhy926, and human umbilical vascular endothelial cells (HUVEC). Our results revealed that (1) the intracellular cGMP levels and the mitochondria membrane potential (MMP) decreased, and calpain and caspases were activated, during beta-lapachone-induced endothelial cell death; (2) co-treatment with calpain inhibitors (ALLM or ALLN) or the intracellular calcium chelator, BAPTA, but not the general caspase inhibitor, zVAD-fmk, provided significant protection against apoptosis by preventing the beta-lapachone-induced MMP decrease and cytoplasmic calcium increase; (3) addition of NO downregulated the beta-lapachone-induced cGMP depletion and protected the cells from apoptosis by blocking the MMP decrease and the calcium increase; and (4) exogenous NO protects endothelial cells against the cell death induced by beta-lapachone, but not the anti-angiogenic effect. From all the data above, we demonstrated that NO can attenuate the apoptotic effect of beta-lapachone on human endothelial cells and suggest that beta-lapachone may have potential as an anti-angiogenic drug.  相似文献   

16.
Bcl-2 protects cells from cytokine-induced nitric-oxide-dependent apoptosis   总被引:2,自引:0,他引:2  
 Cytokine-mediated cell death in tumor cells can be achieved through endogenous nitric oxide (NO) from within tumor cells or exogenous NO from either activated macrophages or endothelial cells. The purpose of this study was to determine the role of Bcl-2 in NO-mediated apoptosis. The incubation of murine L929 and NIH3T3 cells with interleukin-1α (IL-1α) and interferon γ (IFNγ) induced high endogenous NO production only in the L929 cells that also underwent apoptosis. NIH3T3 cells were not resistant to NO-mediated apoptosis. In fact, the incubation of L929 and NIH3T3 cells with exogenous NO derived from NO donors, sodium nitroprusside, or S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced death, characterized by typical apoptotic morphology and DNA fragmentation, in both cell types, but to a higher degree in NIH3T3 cells than in the L929 cells. We then measured the effect of Bcl-2 expression on exogenous NO-induced apoptosis. At both the mRNA and protein levels, L929 fibroblasts expressed higher levels of endogenous mouse Bcl-2 than did NIH3T3 cells. At the same time, L929 cells were much more resistant to exogenous NO-induced cell death than were NIH3T3 cells. The inverse correlation between mouse Bcl-2 expression and sensitivity to exogenous NO-mediated cell death was also found in the murine K-1735 melanoma C-23 and X-21 clonal populations. Transfection of both NIH3T3 cells and L929 cells with the human bcl-2 gene led to resistance to both exogenous and endogenous NO-mediated apoptosis. These data demonstrate that NO-mediated apoptosis can be suppressed by expression of Bcl-2, suggesting that abnormal expression of Bcl-2 may influence the efficacy of tumor immunotherapy. Received: 28 June 1998 / Accepted: 23 August 1996  相似文献   

17.
Plasmodium berghei is the causative agent of rodent malaria and is widely used as a model system to study the liver stage of Plasmodium parasites. The entry of P. berghei sporozoites into hepatocytes has extensively been studied, but little is known about parasite-host interaction during later developmental stages of the intracellular parasite. Growth of the parasite far beyond the normal size of the host cell is an important stress factor for the infected cell. Cell stress is known to trigger programmed cell death (apoptosis) and we examined several apoptotic markers in P. berghei-infected cells and compared their level of expression and their distribution to that of non-infected cells. As none of the apoptotic markers investigated were found altered in infected cells, we hypothesized that parasite infection might confer resistance to apoptosis of the host cell. Treatment with peroxide or serum deprivation induced apoptosis in non-infected HepG2 cells, whereas P. berghei-infected cells appeared protected, indicating that the parasite interferes indeed with the apoptotic machinery of the host cell. To prove the physiological relevance of these results, mice were infected with high numbers of P. berghei sporozoites and treated with tumour necrosis factor (TNF)-alpha/D-galactosamine to induce massive liver apoptosis. Liver sections of these mice, stained for degraded DNA, confirmed that infected cells containing viable parasites were protected from programmed cell death. However, in non-treated control mice as well as in TNF-alpha-treated mice a small proportion of dead intracellular parasites with degraded DNA were detected. Most hepatocytes containing dead parasites provoked an infiltration of immunocompetent cells, indicating that these cells are no longer protected from cell death.  相似文献   

18.
The effect of lipopolysaccharide (LPS) on the cell death induced by endoplasmic reticulum (ER) stress agents in RAW 264.7 cells was studied. LPS prevented the cell death by brefeldin A, but not thapsigargin and tunicamycin. CpG DNA as well as LPS prevented brefeldin A-induced cell death whereas tumor necrosis factor-alpha or interferon-gamma did not. Brefeldin A-induced cell death was mediated with apoptotic cell death and it was significantly inhibited by LPS. LPS abolished the activation of ER stress-related caspases, such as caspases 1, 3, and 4. LPS prevented brefeldin A-induced morphological changes in RAW 264.7 cells. Further, LPS prevented brefeldin A-induced Golgi dispersion. Therefore, LPS was suggested to diminish the stress of ER/Golgi complexes induced by brefeldin A and inhibit apoptosis. The preventive action of LPS on brefeldin A-induced apoptosis is discussed.  相似文献   

19.
Trans fatty acids induce apoptosis in human endothelial cells.   总被引:1,自引:0,他引:1  
The present study was designed to investigate the hypothesis that trans fatty acids can induce apoptosis of human umbilical vein endothelial cells (HUVEC). To test this hypothesis apoptosis was measured in HUVEC treated with 0.1, 1.0 or 5.0 mM trans elaidic acid (t-18:1) or linoelaidic acid (t,t-18:2) for 24 hours. For the detection of apoptosis, TdT-mediated dUTP nick end labelling assay (TUNEL), cell binding of annexin V and propidium iodide uptake were measured. Active Caspase-3 and cleaved PARP (poly-ADP-ribose polymerase) were also measured in the cell lysate. Moreover, cellular ability to produce ROS (reactive oxygen species) was measured by DCF fluorescence Both acids studied induce both early (annexin-positive cells) and late stages of apoptosis (cells stained by propidium iodide) in a dose-dependent manner. Also the appearance of TUNEL-positive cells was induced by both trans fatty acids tested, in a dose dependent manner. Both trans acids induce apoptosis through their effect on Caspase-3 activity and on intracellular ROS production. It is worth emphasising that linoelaidic acid proved to be a more potent inducer of apoptosis and ROS production in endothelial cells than elaidic acid. The present studies suggest that trans fatty acids may play a role in damaging and death of vascular endothelial cells in atherosclerosis.  相似文献   

20.
In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-B nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 µM), and by bilirubin (1 µM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium. endothelium; carbon monoxide; bilirubin; injury; reactive oxygen species; heme oxygenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号