首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

2.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

3.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

4.
The effect of ethanol on maxi Ca2+-activated K+ channels (BK channels) in GH3 pituitary tumor cells was investigated using single-channel recordings and focusing on intracellular signal transduction. In outside-out patches, ethanol caused a transient concentration-dependent increase of BK-channel activity. 30 mm (1.4‰) ethanol significantly increased mean channel open time and channel open probability by 26.3 ± 9% and 78.8 ± 10%, respectively; single-channel current amplitude was not affected by ethanol. The augmenting effect of ethanol was blocked in the presence of protein kinase C (PKC) inhibitors staurosporine, bisindolylmaleimide, and PKC (19–31) pseudosubstrate inhibitor as well as by AMP-PNP (5′-adenylylimidodiphosphate), a nonhydrolyzable ATP-analogue, but not by the phospholipase C blocker U-73122. Phosphatase inhibitors microcystin-LR and okadaic acid promoted the ethanol effect. The blocking effect was released at higher concentrations of ethanol (100 mm) suggesting a second site of action or a competition between blockers and ethanol. Our results suggest that the effect of ethanol on BK-channels is mediated by PKC stimulation and phosphorylation of the channels which increases channel activity and hence may influence action potentials duration and hormone secretion. Received: 24 July 1996/Revised: 27 December 1996  相似文献   

5.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

6.
The aim of the present study was to investigate the roles of Ca2+ and protein tyrosine kinase (PTK) in the insulin action on cell volume in fetal rat (20-day gestational age) type II pneumocytes. Insulin (100 nm) increased cell volume in the presence of extracellular Ca2+ (1 mm), while cell shrinkage was induced by insulin in the absence of extracellular Ca2+ (<1 nm). This insulin action in a Ca2+-containing solution was completely blocked by co-application of bumetanide (50 μm, an inhibitor of Na+/K+/2Cl cotransporter) and amiloride (10 μm, an inhibitor of epithelial Na+ channel), but not by the individual application of either bumetanide or amiloride. On the other hand, the insulin action on cell volume in a Ca2+-free solution was completely blocked by quinine (1 mm, a blocker of Ca2+-activated K+ channel), but not by bumetanide and/or amiloride. These observations suggest that insulin activates an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter in the presence of 1 mm extracellular Ca2+, that the stimulatory action of insulin on an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter requires Ca2+, and that in a Ca2+-free solution insulin activates a quinine-sensitive K+ channel but not in the presence of 1 mm Ca2+. The insulin action on cell volume in a Ca2+-free solution was almost completely blocked by treatment with BAPTA (10 μm) or thapsigargin (1 μM, an inhibitor of Ca2+-ATPase which depletes the intracellular Ca2+ pool). Further, lavendustin A (10 μm, an inhibitor of receptor type PTK) blocked the insulin action in a Ca2+-free solution. These observations suggest that the stimulatory action of insulin on a quinine-sensitive K+ channel is mediated through PTK activity in a cytosolic Ca2+-dependent manner. Lavendustin A, further, completely blocked the activity of the Na+/K+/2Cl cotransporter in a Ca2+-free solution, but only partially blocked the activity of the Na+/K+/2Cl cotransporter in the presence of 1 mm Ca2+. This observation suggests that the activity of the Na+/K+/2Cl cotransporter is maintained through two different pathways; one is a PTK-dependent, Ca2+-independent pathway and the other is a PTK-independent, Ca2+-dependent pathway. Further, we observed that removal of extracellular Ca2+ caused cell shrinkage by diminishing the activity of the amiloride-sensitive Na+ channel and the bumetanide-sensitive Na+/K+/2Cl cotransporter, and that removal of extracellular Ca2+ abolished the activity of the quinine-sensitive K+ channel. We conclude that the cell shrinkage induced by removal of extracellular Ca2+ results from diverse effects on the cotransporter and Na+ and K+ channels. Received: 2 September 1998/Revised: 30 November 1998  相似文献   

7.
To determine if their properties are consistent with a role in regulation of transepithelial transport, Ca2+-activated K+ channels from the basolateral plasma membrane of the surface cells in the distal colon have been characterized by single channel analysis after fusion of vesicles with planar lipid bilayers. A Ca2+-activated K+ channel with a single channel conductance of 275 pS was predominant. The sensitivity to Ca2+ was strongly dependent on the membrane potential and on the pH. At a neutral pH, the K 0.5 for Ca2+ was raised from 20nm at a potential of 0 mV to 300nm at –40 mV. A decrease in pH at the cytoplasmic face of the K+ channel reduced the Ca2+ sensitivity dramatically. A loss of the high sensitivity to Ca2+ was also observed after incubation with MgCl2, possibly a result of dephosphorylation of the channels by endogenous phosphatases. Modification of the channel protein may thus explain the variation in Ca2+ sensitivity between studies on K+ channels from the same tissue. High affinity inhibition (K 0.5=10nm) by charybdotoxin of the Ca2+-activated K+ channel from the extracellular face could be lifted by an outward flux of K+ through the channel. However, at the ion gradients and potentials found in the intact epithelium, charybdotoxin should be a useful tool for examination of the role of maxi K+ channels. The high sensitivity for Ca2+ and the properties of the activator site are in agreement with an important regulatory role for the high conductance K+ channel in the epithelial cells.Dr. E. Moczydlowsky, Yale University School of Medicine, New Haven, CT, and Dr. Per Stampe, Brandeis University, Waltham, MA, are thanked for introduction to the bilayer technique. Tove Soland is thanked for excellent technical assistance. This work was supported by the Novo Nordisk Foundation, the Carlsberg Foundation, the Danish Medical Research Council, and the Austrian Research Council.  相似文献   

8.
Two channels, distinguished by using single-channel patch-clamp, carry out potassium transport across the red cell membrane of lamprey erythrocytes. A small-conductance, inwardly rectifying K+-selective channel was observed in both isotonic and hypotonic solutions (osmolarity decreased by 50%). The single-channel conductance was 26 ± 3 pS in isotonic (132 mm K+) solutions and 24 ± 2 pS in hypotonic (63 mm K+) solutions. No outward conductance was found for this channel, and the channel activity was completely inhibited by barium. Cell swelling activated another inwardly rectifying K+ channel with a larger inward conductance of 65 pS and outward conductance of 15 pS in the on-cell configuration. In this channel, rectification was due to the block of outward currents by Mg2+ and Ca2+ ions, since when both ions were removed from the cytosolic side in inside-out patches the conductance of the channel was nearly ohmic. In contrast to the small-conductance channel, the swelling-activated channel was observed also in the presence of barium in the pipette. Neither type of channel was dependent on the presence of Ca2+ ions on the cytosolic side for activity. Received: 18 July 1997/Revised: 30 January 1998  相似文献   

9.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

10.
We investigated the properties of single K+ channels in the soma membrane of embryonic leech ganglion cells using the patch-clamp technique. We compared these K+ channels with the K+ channels found previously in Retzius neurons of the adult leech. In ganglion cells of 9- to 15-day-old embryos we characterized eight different types of K+ channels with mean conductances of 21, 55, 84, 111, 122, 132, 149 and 223 pS. The 55 pS and 84 pS channels showed flickering and were active for less than 2 min after excising the patch. The 111 pS channel was an outward rectifier, and the open state probability (p o ) decreased in the inside-out configuration when the Ca2+ concentration was raised from pCa 7 to pCa 3. The 122 pS channel also showed outward rectification. This type of channel was activated after changing from the cell-attached to the inside-out configuration and it did not inactivate during more than 30 min. The p o was Ca2+- and voltage-insensitive. One hundred μm glibenclamide reversibly reduced p o . The 132 pS channel was an outward rectifier and was Ca2+-insensitive. The 149 pS channel inactivated in the inside-out configuration. The 149- and the 223 pS channel showed inward rectification. The 111 pS channel had similar properties to the Ca2+-dependent K+ channel and the 122 pS channel resembled the ATP-inhibited K+ channel found previously in Retzius neurons of the adult leech. Received: 20 April 1995/Revised: 18 January 1996  相似文献   

11.
We have previously reported the presence of two Ca2+ influx components with relatively high (KCa= 152 ± 79 μm) and low (KCa= 2.4 ± 0.9 mm) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al. (1996) Pfluegers Arch. 432:105–111]. We have also reported the presence of a high affinity Ca2+ influx component with KCa= 279 ± 43 μm in rat parotid gland basolateral plasma membrane vesicles (BLMV). [Lockwich, Kim & Ambudkar (1994) J. Membrane Biol. 141:289–296]. The present studies show that a low affinity Ca2+ influx component is also present in BLMV with KCa= 2.3 ± 0.41 mm (Vmax= 16.36 ± 4.11 nmoles of Ca2+/mg protein/min). Our data demonstrate that this low affinity component is similar to the low affinity Ca2+ influx component that is activated by internal Ca2+ store depletion in dispersed parotid gland acini by the following criteria: (i) similar KCa for calcium flux, (ii) similar IC50 for inhibition by Ni2+ and Zn2+; (iii) increase in KCa at high external K+, (iv) similar effects of external pH. The high affinity Ca2+ influx in cells is different from the low affinity Ca2+ influx component cells in its sensitivity to pH, KCl, Zn2+ and Ni2+. The low and high affinity Ca2+ influx components in BLMV can also be distinguished from each other based on the effects of Zn2+, Ni2+, KCl, and dicyclohexylcarbodiimide. In aggregate, these data demonstrate the presence of a low affinity passive Ca2+ influx pathway in BLMV which displays characteristics similar to the low affinity Ca2+ influx component detected in parotid acinar cells following internal Ca2+ store depletion. Received: 19 March 1997/Revised: 25 November 1997  相似文献   

12.
To study K+ channels in the basolateral membrane of chloride-secreting epithelia, rat tracheal epithelial monolayers were cultured on permeable filters and mounted into an Ussing chamber system. The mucosal membrane was permeabilized with nystatin (180 μg/ml) in the symmetrical high K+ (145 mm) Ringer solution. During measurement of the macroscopic K+ conductance properties of the basolateral membrane under a transepithelial voltage clamp, we detected at least two types of K+ currents: one is an inwardly rectifying K+ current and the other is a slowly activating outwardly rectifying K+ current. The inwardly rectifying K+ current is inhibited by Ba2+. The slowly activating K+ current was potentiated by cAMP and inhibited by clofilium, phorbol 12-myristae 13-acetate (PMA) and lowering temperature. This is consistent with the biophysical characteristics of I SK channel. RT-PCR analysis revealed the presence of I SK cDNA in the rat trachea epithelia. Although 0.1 mm Ba2+ only had minimal affect on short-circuit current (I sc) induced by cAMP in intact epithelia, 0.1 mm clofilium strongly inhibited it. These results indicate that I SK might be important for maintaining cAMP-induced chloride secretion in the rat trachea epithelia. Received: 1 March 1996/Revised: 5 August 1996  相似文献   

13.
Plant growth requires a continuous supply of intracellular solutes in order to drive cell elongation. Ion fluxes through the plasma membrane provide a substantial portion of the required solutes. Here, patch clamp techniques have been used to investigate the electrical properties of the plasma membrane in protoplasts from the rapid growing tip of maize coleoptiles. Inward currents have been measured in the whole cell configuration from protoplasts of the outer epidermis and from the cortex. These currents are essentially mediated by K+ channels with a unitary conductance of about 12 pS. The activity of these channels was stimulated by negative membrane voltage and inhibited by extracellular Ca2+ and/or tetraethylammonium-CI (TEA). The kinetics of voltage- and Ca2+-gating of these channels have been determined experimentally in some detail (steady-state and relaxation kinetics). Various models have been tested for their ability to describe these experimental data in straightforward terms of mass action. As a first approach, the most appropriate model turned out to consist of an active state which can equilibrate with two inactive states via independent first order reactions: a fast inactivation/activation by Ca2+-binding and -release, respectively (rate constants >>103 sec−1) and a slower inactivation/activation by positive/negative voltage, respectively (voltage-dependent rate constants in the range of 103 sec−1). With 10 mm K+ and 1 mm Ca2+ in the external solution, intact coleoptile cells have a membrane voltage (V) of −105 ± 7 mV. At this V, the density and open probability of the inward-rectifying channels is sufficient to mediate K+ uptake required for cell elongation. Extracellular TEA or Ca2+, which inhibit the K+ inward conductance, also inhibit elongation of auxin-depleted coleoptile segments in acidic solution. The comparable effects of Ca2+ and TEA on both processes and the similar Ca2+ concentration required for half maximal inhibition of growth (4.3 mm Ca2+) and for conductance (1.2 mm Ca2+) suggest that K+ uptake through the inward rectifier provides essential amounts of solute for osmotic driven elongation of maize coleoptiles. Received: 6 June 1995/Revised: 12 September 1995  相似文献   

14.
The hypothesis that amiloride-sensitive Na+ channel complexes immunopurified from bovine renal papillary collecting tubules contain, as their core conduction component, an ENaC subunit, was tested by functional and immunological criteria. Disulfide bond reduction with dithiothreitol (DTT) of renal Na+ channels incorporated into planar lipid bilayers caused a reduction of single channel conductance from 40 pS to 13 pS, and uncoupled PKA regulation of this channel. The cation permeability sequence, as assessed from bi-ionic reversal potential measurements, and apparent amiloride equilibrium dissociation constant (K amil i ) of the Na+ channels were unaltered by DTT treatment. Like ENaC, the DTT treated renal channel became mechanosensitive, and displayed a substantial decrease in K amil i following stretch (0.44 ± 0.12 μm versus 6.9 ± 1.0 μm). Moreover, stretch activation induced a loss in the channel's ability to discriminate between monovalent cations, and even allowed Ca2+ to permeate. Polyclonal antibodies generated against a fusion protein of αbENaC recognized a 70 kDa polypeptide component of the renal Na+ channel complex. These data suggest that ENaC is present in the immunopurified renal Na+ channel protein complex, and that PKA sensitivity is conferred by other associated proteins. Received: 5 June 1995/Revised: 29 September 1995  相似文献   

15.
Ion channels and intracellular Ca2+ are thought to be involved in cell proliferation and may play a role in tumor development. We therefore characterized Ca2+-regulated potassium channels in the human melanoma cell lines IGR1, IPC298, and IGR39 using electrophysiological and molecular biological methods. All cell lines expressed outwardly rectifying K+ channels. Rapidly activating delayed rectifier channels were detected in IGR39 cells. The activation kinetics of voltage-gated K+ channels in IRG1 and IPC298 cells displayed characteristics of ether à go-go (eag) channels as they were much slower and depended both on the holding potential and on extracellular Mg2+. In addition, they could be blocked by physiological concentrations of intracellular Ca2+. In accordance with these electrophysiological results, analysis of mRNA revealed the expression of a gene coding for h-eag1 channels in IGR1 and IPC298 cells, but not in IGR39 cells. At elevated Ca2+ concentrations various types of Ca2+-activated K+ channels with single-channel characteristics similar to IK and SK channels were detected in IGR1 cells. The whole-cell Ca2+-activated K+ currents were not voltage dependent, insensitive for 100 nm apamin and 200 μm d-tubocurarine, but were blocked by charybdotoxin (100 nm) and clotrimazole (50 nm). Analysis of mRNA revealed the expression of hSK1, hSK2, and hIK channels in IGR1 cells. Received: 5 February 1999/Revised: 28 May 1999  相似文献   

16.
Current-voltage relationships of a cation channel in the tonoplast of Beta vulgaris, as recorded in solutions with different activities of Ca2+ and K+ (from Johannes & Sanders 1995, J. Membrane Biol. 146:211–224), have been reevaluated for Ca2+/K+ selectivity. Since conversion of reversal voltages to permeability ratios by constant field equations is expected to fail because different ions do not move independently through a channel, the data have been analyzed with kinetic channel models instead. Since recent structural information on K+ channels show one short and predominant constriction, selectivity models with only one binding site are assumed here to reflect this region kinetically. The rigid-pore model with a main binding site between two energy barriers (nine free parameters) had intrinsic problems to describe the observed current-saturation at large (negative) voltages. The alternative, dynamic-pore model uses a selectivity filter in which the binding site alternates its orientation (empty, or occupied by either Ca2+ or K+) between the cytoplasmic side and the luminal side within a fraction of the electrical distance and in a rate-limiting fashion. Fits with this model describe the data well. The fits yield about a 10% electrical distance of the selectivity filter, located about 5% more cytoplasmic than the electrical center. For K+ translocation, reorientation of the unoccupied binding site (with a preference of about 6:5 to face the lumenal side) is rate limiting. For Ca2+, the results show high affinity to the binding site and low translocation rates (<1% of the K+ translocation rate). With the fitted model Ca2+ entry through the open channel has been calculated for physiological conditions. The model predicts a unitary open channel current of about 100 fA which is insensitive to cytoplasmic Ca2+ concentrations (between 0.1 and 1 μm) and which shows little sensitivity to the voltage across the tonoplast. Received: 19 February 1997/Revised: 19 May 1997  相似文献   

17.
The hyperpolarization of the electrical plasma membrane potential difference has been identified as an early response of plant cells to various signals including fungal elicitors. The hyperpolarization-activated influx of Ca2+ into tomato cells was examined by the application of conventional patch clamp techniques. In both whole cell and single-channel recordings, clamped membrane voltages more negative than −120 mV resulted in time- and voltage-dependent current activation. Single-channel currents saturated with increasing activities of Ca2+ and Ba2+ from 3 to 26 mm and the single channel conductance increased from 4 pS to 11 pS in the presence of 20 mm Ca2+ or Ba2+, respectively. These channels were 20–25 and 10–13 times more permeable to Ca2+ than to K+ and to Cl, respectively. Channel currents were strongly inhibited by 10 μm lanthanum and 50% inhibited by 100 μm nifedipine. This evidence suggests that hyperpolarization-activated Ca2+-permeable channels provide a mechanism for the influx of Ca2+ into tomato cells. Received: 13 February 1996/Revised: 12 August 1996  相似文献   

18.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

19.
Nystatin perforated-patch clamp and single-channel recording methods were used to characterize macroscopic and single-channel K+ currents and the effects of angiotensin II (AngII) in cultured rat adrenal glomerulosa cells. Two basic patterns of macroscopic current-voltage relationships were observed: type 1 exhibited a rapidly activating, noninactivating, voltage-dependent outward current and type 2 exhibited an inactivating voltage-dependent outward current attributed to charybdotoxin sensitive Ca++-dependent K+ channels. Most cells exhibited the type 1 pattern and experiments focused on this cell type. Cell-attached and inside-out patches were dominated by a single K+ channel class which exhibited an outward conductance of 12 pS (20 mm K+ pipette in cell-attached and inside-out configurations, 145 mm K+ in), a mean open time of 2 msec, and a weakly voltage-dependent low open probability that increased with depolarization. Channel open probability was reversibly inhibited by bath stimulation with AngII. At the macroscopic level, type 1 cell macroscopic K+ currents appeared comprised of two components: a weakly voltage-dependent current controlling the resting membrane potential (−85 mV) which appeared mediated by the 12 pS K+ channel and a rapidly activating, noninactivating voltage-dependent current activated above −50 mV. The presence of the second voltage-dependent K+ channel class was suggested by the effects of AngII, the blocking effects of quinidine and Cs+, and the properties of the weakly voltage-dependent K+ channel described. The K+ selectivity of the macroscopic current was demonstrated by the dependence of current reversal potentials on the K+ equilibrium potential and by the effects of K+ channel blockers, Cs+ and quinidine. AngII (10 pm to 1 nm) reversibly inhibited macroscopic K+ currents and this effect was blocked by the AT1 receptor antagonist losartin. Received: 6 August 1996/Revised: 15 November 1996  相似文献   

20.
High-conductance, Ca2+-activated K+ channels from the basolateral membrane of rabbit distal colon epithelial cells were reconstituted into planar phospholipid bilayers to examine the effect of Mg2+ on the single-channel properties. Mg2+ decreases channel current and conductance in a concentration-dependent manner from both the cytoplasmic and the extracellular side of the channel. In contrast to other K+ channels, Mg2+ does not cause rectification of current through colonic Ca2+-activated K+ channels. In addition, cytoplasmic Mg2+ decreases the reversal potential of the channel. The Mg2+-induced decrease in channel conductance is relieved by high K+ concentrations, indicating competitive interaction between K+ and Mg2+. The monovalent organic cation choline also decreases channel conductance and reversal potential, suggesting that the effect is unspecific. The inhibition of channel current by Mg2+ and choline most likely is a result of electrostatic screening of negative charges located superficially in the channel entrance. But in addition to charge, other properties appear to be necessary for channel inhibition, as Na+ and Ba2+ are no (or only weak) inhibitors. Mg2+ and possibly other cations may play a role in the regulation of current through these channels. Received: 25 August 1995/Revised: 16 November 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号