首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The lungs are a major organ site of cytomegalovirus (CMV) infection, pathogenesis, and latency. Interstitial CMV pneumonia represents a critical manifestation of CMV disease, in particular in recipients of bone marrow transplantation (BMT). We have employed a murine model for studying the immune response to CMV in the lungs in the specific scenario of immune reconstitution after syngeneic BMT. Control of pulmonary infection was associated with a vigorous infiltration of the lungs, which was characterized by a preferential recruitment and massive expansion of the CD8 subset of α/β T cells. The infiltrate provided a microenvironment in which the CD8 T cells differentiated into mature effector cells, that is, into functionally active cytolytic T lymphocytes (CTL). This gave us the opportunity for an ex vivo testing of the antigen specificities of CTL present at a relevant organ site of viral pathogenesis. The contribution of the previously identified immediate-early 1 (IE1) nonapeptide of murine CMV was evaluated by comparison with the CD3-redirected cytolytic activity used as a measure of the overall CTL response in the lungs. The IE1 peptide was detected by pulmonary CTL, but it accounted for a minor part of the response. Interestingly, no additional viral or virus-induced antigenic peptides were detectable among naturally processed peptides derived from infected lungs, even though infected fibroblasts were recognized in a major histocompatibility complex-restricted manner. We conclude that the antiviral pulmonary immune response is a collaborative function that involves many antigenic peptides, among which the IE1 peptide is immunodominant in a relative sense.  相似文献   

4.
In the immunocompetent host, primary cytomegalovirus (CMV) infection is resolved by the immune response without causing overt disease. The viral genome, however, is not cleared but is maintained in a latent state that entails a risk of virus recurrence and consequent organ disease. By using murine CMV as a model, we have shown previously that multiple organs harbor latent CMV and that reactivation occurs with an incidence that is determined by the viral DNA load in the respective organ (M. J. Reddehase, M. Balthesen, M. Rapp, S. Jonjic, I. Pavic, and U. H. Koszinowski. J. Exp. Med. 179:185–193, 1994). This predicts that a therapeutic intervention capable of limiting the load of latent viral genome should also reduce the risk of virus recurrence. Here we demonstrate the benefits and the limits of a preemptive CD8 T-cell immunotherapy of CMV infection in the immunocompromised bone marrow transplantation recipient. Antiviral CD8 T cells prevented CMV disease and accelerated the resolution of productive infection. The therapy also resulted in a lower load of latent CMV DNA in organs and consequently reduced the incidence of recurrence. The data thus provide a further supporting argument for clinical trials of preemptive cytoimmunotherapy of human CMV disease with CD8 T cells. However, CD8 T cells failed to clear the viral DNA. The therapy-susceptible portion of the DNA load differed between organs and was highest in the lungs. The existence of an invariant, therapy-resistant load suggests a role for immune system evasion mechanisms in the establishment of CMV latency.Recurrence of productive infection by reactivation of latent viral genome in the immunocompromised host is a feature common to the members of the herpesvirus family (39; reviewed in reference 38). Specifically, in the case of human cytomegalovirus (CMV), the human herpesvirus type 5, primary as well as recurrent infection during the temporal immunodeficiency early after bone marrow (BM) transplantation (BMT) entails a risk of graft failure and severe organ manifestations of CMV disease (8, 44). Early findings by Quinnan et al. (24) have suggested a correlation between efficient reconstitution of the cellular immune response and the control of post-BMT CMV infection, and more recent clinical data have attributed this control to the reconstituted CD8 T cells (35). Accordingly, restoration of antiviral immunity in the critical phase before the reconstitution by BMT becomes effective should diminish the risk of CMV disease. Experimental research with the model of murine CMV infection has positively demonstrated the antiviral and protective efficacy of adoptively transferred acutely sensitized (31, 34) or memory (28) CD8 T cells recovered from immune donors as well as of short-term CD8 T-cell lines propagated in culture (32). These studies have been pivotal for clinical trials of a preemptive CD8 T-cell immunotherapy of post-BMT human CMV infection in patients (37, 43).Infection of the BMT recipient can accidentally result from the transmission of infectious virus, however, productive infection is more commonly initiated by reactivation of latent CMV in either the transplant or the recipient’s own organs or, occasionally, both (11). For the murine model system, we have previously demonstrated the existence of multiple organ sites of CMV latency at which the latent viral DNA is retained after the resolution of productive primary infection and after clearance of the viral genome from hematopoietic leukocytic cells in BM and blood (27). In accordance with the wide distribution of the latent viral DNA, recurrence was found to occur focally in any of the organs, which led us to propose the concept of multifocal CMV latency and recurrence (27). Most importantly, the incidence of recurrence was found to correlate with the load of latent viral DNA in the respective tissue. Specifically, low virus dissemination and rapid control of infection in immunocompetent adult mice resulted in a low load and was associated with a low risk of recurrence, whereas the delayed control of infection in neonatal mice resulted in a high load and was associated with a high risk. Furthermore, there were also organ-specific differences. In accordance with the high incidence of interstitial CMV pneumonia after BMT, the lungs were identified as having a high load of latent CMV (2, 17).It is apparent that antiviral CD8 T cells generated during primary infection as well as memory cells present during latency do not eradicate latently infected cells under physiological conditions, since latency would not exist if they did. However, it has been open to question whether adoptive transfer of antiviral CD8 effector cells could prevent the escape of virus into latency. We will show here that modulation of primary infection by experimental CD8 T-cell immunotherapy has indeed had an effect on the load of latent viral DNA in tissues. The effect of the therapy is of relevance, since the load of latent viral DNA can be kept below the threshold required for effective recurrence. Our data thus provide a further supporting argument for clinical trials of cytoimmunotherapy. Interestingly, however, the data also predict that no dosage of CD8 T cells will prevent the establishment of latency.  相似文献   

5.
Interstitial pneumonia (IP) is a severe organ manifestation of cytomegalovirus (CMV) disease in the immunocompromised host, in particular in recipients of bone marrow transplantation (BMT). Diagnostic criteria for the definition of CMV-IP include clinical evidence of pneumonia together with CMV detected in bronchoalveolar lavage or lung biopsy. We have used the model of syngeneic BMT and simultaneous infection of BALB/c mice with murine CMV for studying the pathogenesis of CMV-IP by controlled longitudinal analysis. A disseminated cytopathic infection of the lungs with fatal outcome was observed only when reconstituting CD8 T cells were depleted. Neither CD8 nor CD4 T cells mediated an immunopathogenesis of acute CMV-IP. By contrast, after efficient hematolymphopoietic reconstitution, viral replication in the lungs was moderate and focal. The histopathological picture was dominated by preferential infiltration of CD8 T cells confining viral replication to inflammatory foci. Notably, after clearance of acute infection, CD62L(lo) and CD62L(hi) subsets of CD44(+) memory CD8 T cells were found to persist in lung tissue. One can thus operationally distinguish an early CMV-positive IP (phase 1) and a late CMV-negative IP (phase 2). According to the definition, phase 2 histopathology would not be diagnosed as a CMV-IP and could instead be misinterpreted as a CMV-induced immunopathology. We document here that phase 1 as well as phase 2 pulmonary CD8 T cells are capable of exerting effector functions and are effectual in protecting against productive infection. We propose that antiviral "stand-by" memory-effector T cells persist in the lungs to prevent virus recurrence from latency.  相似文献   

6.
Cellular Localization of Latent Murine Cytomegalovirus   总被引:12,自引:7,他引:5       下载免费PDF全文
Herpesviruses typically establish latent infection in their hosts. The cell(s) responsible for harboring latent virus, in most cases, is not known. Using immunofluorescence and PCR-in situ hybridization (PISH), a technique which combines the sensitivity of PCR with the localization and specificity of in situ hybridization, we provide the first direct evidence that endothelial cells are a major site of murine cytomegalovirus (MCMV) DNA in latently infected animals. These findings are consistent with existing knowledge of the biological behavior of CMV, in particular the transmission of latent CMV by solid organ and bone marrow transplantation, in both human and animal models. In addition, we have localized MCMV DNA in the lung alveolar macrophage and in bone marrow cells. Our findings confirm that bone marrow-derived hematopoietic cells are a site of CMV latency and further suggest that bone marrow may be a reservoir of infected progeny capable of migrating into the circulation and establishing latency in various tissues. These findings provide clearly needed insight into the site of latent infection which is central to an understanding of the mechanisms of reactivation.  相似文献   

7.
The lungs are a noted predilection site of acute, latent, and reactivated cytomegalovirus (CMV) infections. Interstitial pneumonia is the most dreaded manifestation of CMV disease in the immunocompromised host, whereas in the immunocompetent host lung-infiltrating CD8 T cells confine the infection in nodular inflammatory foci and prevent viral pathology. By using murine CMV infection as a model, we provide evidence for a critical role of mast cells (MC) in the recruitment of protective CD8 T cells to the lungs. Systemic infection triggered degranulation selectively in infected MC. The viral activation of MC was associated with a wave of CC chemokine ligand 5 (CCL5) in the serum of C57BL/6 mice that was MC-derived as verified by infection of MC-deficient KitW-sh/W-sh “sash” mutants. In these mutants, CD8 T cells were recruited less efficiently to the lungs, correlating with enhanced viral replication and delayed virus clearance. A causative role for MC was verified by MC reconstitution of “sash” mice restoring both, efficient CD8 T-cell recruitment and infection control. These results reveal a novel crosstalk axis between innate and adaptive immune defense against CMV, and identify MC as a hitherto unconsidered player in the immune surveillance at a relevant site of CMV disease.  相似文献   

8.
9.
Human cytomegalovirus (CMV) infection of bone marrow transplant recipients can cause pancytopenia, as well as life-threatening interstitial pneumonia. CMV replicates actively in bone marrow stromal cells, whereas it remains latent in hematopoietic progenitors. Our aim was to study the influence of CMV infection on adherence of CD34(+) cells to the myofibroblastic component of human bone marrow and examine transmission of virus from myofibroblasts to CD34(+) cells. We show that smooth actin, but not fibronectin, organization is markedly modified by CMV infection of bone marrow stromal myofibroblasts. Nonetheless, CMV infection led to increased adherence of the CD34(+) progenitor cell line, KG1a, relative to adherence to uninfected myofibroblasts from the same donors. Adherence of CD34(+) cells to infected bone marrow myofibroblasts resulted in transfer of virions and viral proteins through close cell-to-cell contacts. This phenomenon may play a role in the pathophysiology of CMV bone marrow infection and in eventual virus dissemination.  相似文献   

10.
Bone marrow (BM) failure associated with cytomegalovirus (CMV) infection is a feared complication after clinical BM transplantation. Experiments in long-term BM cultures have indicated that BM stromal cells (BMSC) are targets of productive CMV infection, but an in situ infection of BM stroma remained to be documented, and the pathomechanism is open to question. Here we describe a murine in vivo model of lethal CMV aplastic anemia (CMV-AA). The reconstitution of hematopoietic progenitor cells expressing stem cell factor (SCF) receptor was found to be defective in CMV-AA. While murine CMV replication in permissive parenchymal tissues is cytolytic, the hematopoietic cord was found to be a site of very limited virus production with foci of reticular BMSC expressing the intranuclear viral IE1 protein, but with only a few BMSC positive for viral genome in the in situ hybridization. XX-XY BM chimeras were established in order to quantitate Y-chromosome-tagged BMSC by a PCR specific for the male-sex-determining gene Tdy. This approach revealed that murine CMV infection is not associated with a significant loss of BMSC. Despite the physical integrity of the stromal network, the functional integrity of the stroma was impaired. While housekeeping genes were expressed normally in BMSC of infected mice, the expression of genes encoding the essential hemopoietins SCF, granulocyte colony-stimulating factor, and interleukin-6 was markedly reduced. In conclusion, the mechanism of BM failure is not a stromal lesion but an insufficient stromal function. These findings explain CMV-AA as a manifestation of multiple hemopoietin deficiency.  相似文献   

11.
Quantitative analysis of latent human cytomegalovirus   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

12.
We have previously shown that cytomegalovirus (CMV) can reactivate in lungs of nonimmunosuppressed patients during critical illness. Our recent work has shown that polymicrobial bacterial sepsis can trigger reactivation of latent murine CMV (MCMV). We hypothesize that MCMV reactivation following bacterial sepsis may be caused by inflammatory mediators. To test this hypothesis, BALB/c mice latently infected with Smith strain MCMV received sublethal intraperitoneal doses of lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), or saline. Lung tissue homogenates were evaluated for viral reactivation 3 weeks after mediator injection. Because LPS is known to signal via Toll-like receptor 4 (TLR-4) in mice, further studies blocking this signaling mechanism were performed using monoclonal MTS510. Finally, mice were tested with intravenous TNF-alpha to determine whether this would cause reactivation. All mice receiving sublethal intraperitoneal doses of LPS, TNF-alpha, or IL-1beta had pulmonary reactivation of latent MCMV 3 weeks following injection, and LPS caused MCMV reactivation with kinetics similar to those for sepsis. When TLR-4 signaling was blocked, exogenous LPS did not reactivate latent MCMV. Intravenous TNF-alpha administration at near-lethal doses did not reactivate MCMV. Exogenous intraperitoneal LPS, TNF-alpha, and IL-1beta are all capable of reactivating CMV from latency in lungs of previously healthy mice. LPS reactivation of MCMV appears dependent on TLR-4 signaling. Interestingly, intravenous TNF-alpha did not trigger reactivation, suggesting possible mechanistic differences that are discussed. We conclude that inflammatory disease states besides sepsis may be capable of reactivating CMV from latency.  相似文献   

13.
Interstitial cytomegalovirus (CMV) pneumonia is a clinically relevant complication in recipients of bone marrow transplantation (BMT). Recent data for a model of experimental syngeneic BMT and concomitant infection of BALB/c mice with murine CMV (mCMV) have documented the persistence of tissue-resident CD8 T cells after clearance of productive infection of the lungs (J. Podlech, R. Holtappels, M.-F. Pahl-Seibert, H.-P. Steffens, and M. J. Reddehase, J. Virol. 74:7496-7507, 2000). It was proposed that these cells represent antiviral "standby" memory cells whose functional role might be to help prevent reactivation of latent virus. The pool of pulmonary CD8 T cells was composed of two subsets defined by the T-cell activation marker L-selectin (CD62L): a CD62L(hi) subset of quiescent memory cells, and a CD62L(lo) subset of recently resensitized memory-effector cells. In this study, we have continued this line of investigation by quantitating CD8 T cells specific for the three currently published antigenic peptides of mCMV: peptide YPHFMPTNL processed from the immediate-early protein IE1 (pp89), and peptides YGPSLYRRF and AYAGLFTPL, derived from the early proteins m04 (gp34) and M84 (p65), respectively. IE1-specific CD8 T cells dominated in acute-phase pulmonary infiltrates and were selectively enriched in latently infected lungs. Notably, most IE1-specific CD8 T cells were found to belong to the CD62L(lo) subset representing memory-effector cells. This finding is in accordance with the interpretation that IE1-specific CD8 T cells are frequently resensitized during latent infection of the lungs and may thus be involved in the maintenance of mCMV latency.  相似文献   

14.
Human CMV is often associated with transplant rejection and opportunistic infections such as pneumonia in immunosuppressed patients. Current anti-CMV therapies, although effective, show relatively high toxicity, which seriously limits their long-term use. In this study, we provide evidence that leukotriene B(4) (LTB(4)) plays an important role in the fight against murine CMV (MCMV) infection in vivo. Intravenous administration of 50 and 500 ng/kg/day of LTB(4) to mice infected with a lethal dose of MCMV significantly increases their survival (50 and 70%, respectively), compared with the placebo-treated group (10% of survival). In mice infected with a sublethal dose of MCMV and treated daily with 50 ng/kg/day of LTB(4), the salivary gland viral loads were found to be reduced by 66% compared with the control group. Furthermore, using an allogeneic bone marrow transplantation mouse model, the frequency of MCMV reactivation from latently infected mice was much lower (38%) in LTB(4) (500 ng/kg)-treated mice than in the placebo-treated group (78%). Finally, in experiments using 5-lipoxygenase-deficient mice, MCMV viral loads in salivary glands were found to be higher in animals unable to produce leukotrienes than in the control groups, supporting a role of endogenous 5-lipoxygenase products, possibly LTB(4), in host defense against CMV infection.  相似文献   

15.
Open reading frame 73 (ORF 73) is conserved among the gamma-2-herpesviruses (rhadinoviruses) and, in Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS), has been shown to encode a latency-associated nuclear antigen (LANA). The KSHV and HVS LANAs have also been shown to be required for maintenance of the viral genome as an episome during latency. LANA binds both the viral latency-associated origin of replication and the host cell chromosome, thereby ensuring efficient partitioning of viral genomes to daughter cells during mitosis of a latently infected cell. In gammaherpesvirus 68 (gammaHV68), the role of the LANA homolog in viral infection has not been analyzed. Here we report the construction of a gammaHV68 mutant containing a translation termination codon in the LANA ORF (73.STOP). The 73.STOP mutant virus replicated normally in vitro, in both proliferating and quiescent murine fibroblasts. In addition, there was no difference between wild-type (WT) and 73.STOP virus in the kinetics of induction of lethality in mice lacking B and T cells (Rag 1(-/-)) infected with 1000 PFU of virus. However, compared to WT virus, the 73.STOP mutant exhibited delayed kinetics of replication in the lungs of immunocompetent C57BL/6 mice. In addition, the 73.STOP mutant exhibited a severe defect in the establishment of latency in the spleen of C57BL/6 mice. Increasing the inoculum of 73.STOP virus partially overcame the acute replication defected observed in the lungs at day 4 postinfection but did not ameliorate the severe defect in the establishment of splenic latency. Thus, consistent with its proposed role in replication of the latent viral episome, LANA appears to be a critical determinant in the establishment of gammaHV68 latency in the spleen post-intranasal infection.  相似文献   

16.
Although γherpesvirus infections are associated with enhanced lung fibrosis in both clinical and animal studies, there is limited understanding about fibrotic effects of γherpesviruses on cell types present in the lung, particularly during latent infection. Wild-type mice were intranasally infected with a murine γherpesvirus (γHV-68) or mock-infected with saline. Twenty-eight days postinfection (dpi), ~14 days following clearance of the lytic infection, alveolar macrophages (AMs), mesenchymal cells, and CD19-enriched cell populations from the lung and spleen express M(3) and/or glycoprotein B (gB) viral mRNA and harbor viral genome. AMs from infected mice express more transforming growth factor (TGF)-β(1), CCL2, CCL12, TNF-α, and IFN-γ than AMs from mock-infected mice. Mesenchymal cells express more total TGF-β(1), CCL12, and TNF-α than mesenchymal cells from mock-infected mice. Lung and spleen CD19-enriched cells express more total TGF-β(1) 28 dpi compared with controls. The CD19-negative fraction of the spleen overexpresses TGF-β(1) and harbors viral genome, but this likely represents infection of monocytes. Purified T cells from the lung harbor almost no viral genome. Purified T cells overexpress IL-10 but not TGF-β(1). Intracellular cytokine staining demonstrated that lung T cells at 28 dpi produce IFN-γ but not IL-4. Thus infection with a murine γherpesvirus is sufficient to upregulate profibrotic and proinflammatory factors in a variety of lung resident and circulating cell types 28 dpi. Our results provide new information about possible contributions of these cells to fibrogenesis in the lungs of individuals harboring a γherpesvirus infection and may help explain why γHV-68 infection can augment or exacerbate fibrotic responses in mice.  相似文献   

17.
18.
The human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and EBV cause important infections. As pathogenetic studies of the human infections are restricted, murine gammaherpesvirus 68 serves as a model to study gammaherpesvirus pathogenesis. TLRs are a conserved family of receptors detecting microbial molecular patterns. Among the TLRs, TLR9 recognizes unmethylated CpG DNA motifs present in bacterial and viral DNA. The aim of this study was to assess the role of TLR9 in gammaherpesvirus pathogenesis. Upon stimulation with murine gammaherpesvirus 68, Flt3L-cultured bone marrow cells (dendritic cells) from TLR9-/- mice secreted reduced levels of IL-12, IFN-alpha, and IL-6, when compared with dendritic cells from wild-type mice. Intranasal infection of TLR9-/- and wild-type mice did not reveal any differences during lytic and latent infection. In contrast, when infected i.p., TLR9-/- mice showed markedly higher viral loads both during lytic and latent infection. Thus, we show for the first time that TLR9 is involved in gammaherpesvirus pathogenesis and contributes to organ-specific immunity.  相似文献   

19.
Murine herpes virus (MHV), a natural pathogen originally isolated from free-living rodents, constitutes the most amenable animal model for human gamma herpesviruses. Based on DNA sequence homology, this virus was classified as Murid Herpesvirus 4 to subfamily Gammaherpesvirinae. Pilot studies in our laboratory, using mice inoculated by the intranasal route, showed that MHV infects macrophages, B lymphocytes, lung alveolar as well as endothelial cells. From the lungs the virus spreads via the bloodstream to spleen and bone marrow and via the lymphatics to the mediastinal lymph nodes. Similarly to other gamma herpesviruses, MHV established life-long latency maintained in host B lymphocytes and macrophages. An IM-like syndrome (per analogy to EBV) may develop during acute MHV infection, in which the atypical T/CD8+ lymphocytes eliminate viral DNA carrying B cells expressing the M2 latency associated protein. During latency, the MHV LANA (a KSHV LANA homologue) maintains the latent viral genome, assuring its copying and partition to new carrier cells in the course of division of the maternal cell. The nonproductive latency is turned onto virus replication by means of Rta protein. The chronic lymphoproliferative syndrome of unclear pathogenesis, which occurs in a certain part of latent MHV carriers, is related to the expression of gamma herpesvirus common latency-associated genes such as v-cyclin and/or to that of a virus-specific (M11/bcl-2) gene. This review attempts to summarize our knowledge concerning the function of MHV genes (either gamma herpesvirus common or MHV specific) related to immune evasion, latency and lymphoproliferation when highlighting the unsolved problems and/or controversial opinions.  相似文献   

20.
Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2, M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号