首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homeostatic expansion occurs independently of costimulatory signals.   总被引:11,自引:0,他引:11  
Naive T cells undergo homeostatic proliferation in lymphopenic mice, a process that involves TCR recognition of specific self peptide/MHC complexes. Since costimulation signals regulate the T cell response to foreign Ags, we asked whether they also regulate homeostatic expansion. We report in this study that homeostatic expansion of CD4 and CD8 T cells occurs independently of costimulation signals mediated through CD28/B7, CD40L/CD40, or 4-1BB/4-1BBL interactions. Using DO11.10 TCR transgenic T cells, we confirmed that CD28 expression was dispensable for homeostatic expansion, and showed that the presence of endogenous CD4(+)CD25(+) regulatory cells did not detectably influence homeostatic expansion. The implications of these findings with respect to regulation of T cell homeostasis and autoimmunity are discussed.  相似文献   

2.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

3.
Nam KO  Shin SM  Lee HW 《Cytokine》2006,33(2):87-94
4-1BB, one of co-stimulatory molecules, is a member of TNF receptor superfamily and expressed on T cells upon TCR ligation. We have shown that 4-1BB is a co-stimulatory molecule enhancing cell cycle progression and inhibiting activation-induced cell death of CD8+ T cells by enhancing TCR signaling pathways. Here, we first report that the cross-linking of 4-1BB increased the expression of IL-13 mRNA and protein, and its secretion apparently via calcineurin, a Ca2+/calmodulin-dependent phosphatase. Ligation of 4-1BB with p815-m-4-1BBL evoked intracellular Ca2+ level in CD8+ T cells. CD8+ T cells express IL-13 receptor alpha1 mRNA. Incubation with anti-IL-13 blocking mAb reduced proliferation of CD8+ T cells enhanced by 4-1BB, and the treatment of CD3/4-1BB-ligated CD8+ T cells with recombinant IL-13 enhances cell proliferation, indicating that 4-1BB-induced IL-13 expression is partially responsible for the CD8+ T cell expansion in an autocrine or paracrine manner.  相似文献   

4.
Since 4-1BB plays a predominant role in CD8+ T cell responses, we investigated the effects of 4-1BB triggering on the primary and memory CD8+ T responses to HSV-1 infection. 4-1BB was detected on 10-15% of CD4+ and CD8+ T cells following the infection. 4-1BB-positive T cells were in the proliferative mode and showed the enhanced expression of anti-apoptotic proteins. Agonistic anti-4-1BB treatment exerted preferential expansion of CD8+ T cells and gB/H-2Kb-positive CD8+ T cells, and enhanced cytotoxicity against HSV-1 that was mainly mediated by CD11c+CD8+ T cells. CD11c+CD8+ T cells were re-expanded following re-challenge with HSV-1 at post-infection day 50, indicating that CD11c+CD8+ phenotype was maintained in memory CD8+ T cell pool. Our studies demonstrated that 4-1BB stimulation enhanced both primary and memory anti-HSV-1 CD8+ T cell responses, which was mediated by a massive expansion of antigen-specific CD11c+CD8+ T cells.  相似文献   

5.
The Src family kinase Fyn is expressed in T cells and has been shown to phosphorylate proteins involved in TCR signaling, cytoskeletal reorganization, and IL-4 production. Fyn-deficient mice have greatly decreased numbers of NKT cells and have thymocytes and T cells with compromised responses following Ab crosslinking of their TCRs. Herein we have addressed the role of Fyn in peptide/MHC class II-induced CD4(+) T cell responses. In Fyn-deficient mice, CD4(+) T cells expressing the DO11.10 TCR transgene developed normally, and the number and phenotype of naive and regulatory DO11.10(+)CD4(+) T cells in the periphery were comparable with their wild-type counterparts. Conjugation with chicken OVA peptide 323-339-loaded APCs, and the subsequent proliferation in vitro or in vivo of DO11.10(+) Fyn-deficient CD4(+) T cells, was virtually indistinguishable from the response of DO11.10(+) wild-type CD4(+) T cells. Proliferation of Fyn-deficient T cells was not more dependent on costimulation through CD28. Additionally, we have found that differentiation, in vitro or in vivo, of transgenic CD4(+) Fyn-deficient T cells into IL-4-secreting effector cells was unimpaired, and under certain conditions DO11.10(+) Fyn-deficient CD4(+) T cells were more potent cytokine-producing cells than DO11.10(+) wild-type CD4(+) T cells. These data demonstrate that ablation of Fyn expression does not alter most Ag-driven CD4(+) T cell responses, with the exception of cytokine production, which under some circumstances is enhanced in Fyn-deficient CD4(+) T cells.  相似文献   

6.
The leukocyte-specific integrin, LFA-1, plays a critical role in trafficking of T cells to both lymphoid and nonlymphoid tissues. However, the role of LFA-1 in T cell activation in vivo has been less well understood. Although there have been reports describing LFA-1-deficient T cell response defects in vivo, due to impaired migration to lymphoid structures and to sites of effector function in the absence of LFA-1, it has been difficult to assess whether T cells also have a specific activation defect in vivo. We examined the role of LFA-1 in CD4(+) T cell activation in vivo by using a system that allows for segregation of the migration and activation defects through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 Ag-specific TCR transgenic mice into wild-type BALB/c mice. We find that in addition to its role in trafficking to peripheral lymph nodes, LFA-1 is required for optimal CD4(+) T cell priming in vivo upon s.c. immunization. CD18(-/-) DO11.10 CD4(+) T cells primed in the lymph nodes demonstrate defects in IL-2 and IFN-gamma production. In addition, recipient mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate a defect in OVA-specific IgG2a production after s.c. immunization. The defect in priming of CD18(-/-) CD4(+) T cells persists even in the presence of proliferating CD18(+/-) CD4(+) T cells and in lymphoid structures to which there is no migration defect. Taken together, these results demonstrate that LFA-1 is required for optimal CD4(+) T cell priming in vivo.  相似文献   

7.
Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo   总被引:7,自引:0,他引:7  
High-affinity IL-2R signals are required for peripheral lymphoid homeostasis in vivo. We found that CD25 was required for regulation of peripheral T cells in mice bearing either the DO11.10 MHC class II-restricted TCR transgene or an Iabeta-null mutation, suggesting that MHC class I- and class II-dependent T cell subsets are regulated independently by IL-2R signals. In contrast, deregulation of serum IgG1 levels in CD25-/- mice was dependent on CD4+ T cells. T cell expansion in DO11.10 CD25-/- mice was not preferential for cells escaping allelic exclusion by the TCR transgene, but was suppressed by a Rag-2-null mutation. Together, these findings suggest that endogenous TCR are required to trigger T cell expansion, but that CD25 regulates T cells activated by low-specificity signals. Expansion of DO11.10 T cells in response to cognate Ag was modestly reduced in CD25-/- T cells transferred into the normal lymphoid compartments of BALB/c mice. Moreover, activation-induced clonal contraction and apoptosis in vivo were intact in the absence of CD25. These data indicate that the regulatory role of high-affinity IL-2R signals extends beyond the control of Ag-specific responses and suggest a role for these signals in control of bystander T cell activation.  相似文献   

8.
CD4+CD25+ regulatory T cells (Tr) are important in maintaining immune tolerance to self-antigen (Ag) and preventing autoimmunity. Reduced number and inadequate function of Tr are observed in chronic autoimmune diseases. Adoptively transferred Tr effectively suppress ongoing autoimmune disease in multiple animal models. Therefore, strategies to modulate Tr have become an attractive approach to control autoimmunity. Activation of Tr is necessary for their optimal immune regulatory function. However, due to the low ratio of Tr to any given antigen (Ag) and the unknown nature of Ag in many autoimmune diseases, specific activation is not practical for potential therapeutic intervention. It has been shown in animal models that once activated, Tr can exhibit immune suppression in a bystander Ag-non-specific fashion, suggesting the effector phase of Tr is Ag independent. To investigate whether the immune suppression by activated bystander Tr is as potent as that of the Ag specific Tr, Tr cells were isolated from BALB/c or ovalbumin (OVA) specific T cell receptor (TCR) transgenic mice (DO11.10) and their immune suppression of an OVA specific T cell response was compared. We found that once activated ex vivo, Tr from BALB/c and DO11.10 mice exhibited comparable inhibition on OVA specific T cell responses as determined by T cell proliferation and cytokine production. Furthermore, their immune suppression function was compared in a delayed type hypersensitivity (DTH) model induced by OVA specific T cells. Again, OVA specific and non-specific Tr exhibited similar inhibition of the DTH response. Taken together, the results indicate that ex vivo activated Ag-non-specific Tr are as efficient as Ag specific Tr in immune suppression, therefore our study provides additional evidence suggesting the possibility of applying ex vivo activated Tr therapy for the control of autoimmunity.  相似文献   

9.
The triggering Ag for inflammatory bowel disease and animal models of colitis is not known, but may include gut flora. Feeding OVA to DO11.10 mice with OVA-specific transgenic (Tg) TCR generates Ag-specific immunoregulatory CD4(+) T cells (Treg) cells. We examined the ability of oral Ag-induced Treg cells to suppress T cell-mediated colitis in mice. SCID-bg mice given DO11.10 CD4(+)CD45RB(high) T cells developed colitis, and cotransferring DO11.10 CD45RB(low)CD4(+) T cells prevented CD4(+)CD45RB(high) T cell-induced colitis in the absence of OVA. The induction and prevention of disease by DO11.10 CD4(+) T cell subsets were associated with an increase in endogenous TCRalpha chain expression on Tg T cells. Feeding OVA to SCID-bg mice reconstituted with DO11.10 CD4(+)CD45RB(high) attenuated the colitis in association with increased TGF-beta and IL-10 secretion, and decreased proliferative responses to both OVA and cecal bacteria Ag. OVA feeding also attenuated colitis in SCID-bg mice reconstituted with a mix of BALB/c and DO11.10 CD45RB(high) T cells, suggesting that OVA-induced Treg cells suppressed BALB/c effector cells. The expression of endogenous non-Tg TCR allowed for DO11.10-derived T cells to respond to enteric flora Ag. Furthermore, feeding OVA-induced Treg cells prevented colitis by inducing tolerance in both OVA-reactive and non-OVA-reactive T cells and by inducing Ag-nonspecific Treg cells. Such a mechanism might allow for Ag-nonspecific modulation of intestinal inflammation in inflammatory bowel disease.  相似文献   

10.
A costimulatory member of the TNFR family, 4-1BB, is expressed on activated T cells. Although some reports have suggested that 4-1BB is primarily involved in CD8 T cell activation, in this report we demonstrate that both CD4 and CD8 T cells respond to 4-1BB ligand (4-1BBL) with similar efficacy. CD4 and CD8 TCR transgenic T cells up-regulate 4-1BB, OX40, and CD27 and respond to 4-1BBL-mediated costimulation during a primary response to peptide Ag. 4-1BBL enhanced proliferation, cytokine production, and CTL effector function of TCR transgenic T cells. To compare CD4 vs CD8 responses to 4-1BBL under similar conditions of antigenic stimulation, we performed MLRs with purified CD4 or CD8 responders from CD28(+/+) and CD28(-/-) mice. We found that CD8 T cells produced IL-2 and IFN-gamma in a 4-1BBL-dependent manner, whereas under the same conditions the CD4 T cells produced IL-2 and IL-4. 4-1BBL promoted survival of CD4 and CD8 T cells, particularly at late stages of the MLR. CD4 and CD8 T cells both responded to anti-CD3 plus s4-1BBL with a similar cytokine profile as observed in the MLR. CD4 and CD8 T cells exhibited enhanced proliferation and earlier cell division when stimulated with anti-CD3 plus anti-CD28 compared with anti-CD3 plus 4-1BBL, and both subsets responded comparably to anti-CD3 plus 4-1BBL. These data support the idea that CD28 plays a primary role in initial T cell expansion, whereas 4-1BB/4-1BBL sustains both CD4 and CD8 T cell responses, as well as enhances cell division and T cell effector function.  相似文献   

11.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

12.
CD5 deficiency results in a hyper-responsive phenotype to Ag receptor stimulation. Here we show that the development and responses of CD4 lineage T cells are regulated by the function of CD5. Thymocytes expressing the I-Ad-restricted DO11.10 TCR undergo abnormal selection without CD5. In H-2d mice, the absence of CD5 causes deletion of double-positive thymocytes, but allows for efficient selection of cells expressing high levels of the DO11.10 clonotype. By contrast, there is enhanced negative selection against the DO11.10 clonotype in the presence of I-Ab. T cell hybridomas and DO11.10 T cells are more responsive to TCR stimulation in the absence of CD5. Such hypersensitivity can be eliminated by expression of wild-type CD5, but not by a form of CD5 that lacks the cytoplasmic tail. Finally, CD5 deficiency partially suppresses the block of CD4 lineage development in CD4-deficient mice. Taken together, the data support a general role for CD5 as a negative regulator of Ag receptor signaling in the development and immune responses of CD4 lineage T cells.  相似文献   

13.
Enhanced CD4 T cell responsiveness in the absence of 4-1BB   总被引:5,自引:0,他引:5  
The 4-1BB (CD137) is a member of the TNFR superfamily, and is expressed on several cell types, including activated T cells. Although 4-1BB ligation by agonistic Ab or 4-1BB ligand-expressing APCs can costimulate T cells, the physiological significance of 4-1BB expression in vivo during T cell responses is still being elucidated. In this study, we have addressed the impact on CD4 T cell priming when 4-1BB is absent after gene targeting. Surprisingly, 4-1BB(-/-) mice generated more enhanced effector CD4 T cell responses to OVA protein in adjuvant, even though Ab responses in 4-1BB(-/-) mice were normal. Using an adoptive transfer system with OT-II TCR transgenic CD4 T cells, we found that 4-1BB(-/-) CD4 cells responding in a 4-1BB-sufficient environment had enhanced cell division compared with wild-type cells and displayed augmented clonal expansion during the primary response. This was not due to a developmental defect as 4-1BB-deficient CD4 cells could respond normally to Ag in vitro. These results demonstrate that the absence of 4-1BB can make CD4 T cells hyperresponsive to protein Ag in vivo, suggesting a new unappreciated negative regulatory role of 4-1BB when expressed on a T cell.  相似文献   

14.
It remains unknown why the T cell tolerance to nuclear autoantigens is impaired in systemic autoimmune diseases. To clarify this, we generated transgenic mice expressing OVA mainly in the nuclei (Ld-nOVA mice). When CD4+ T cells from DO11.10 mice expressing a TCR specific for OVA(323-339) were transferred into Ld-nOVA mice, they were rendered anergic, but persisted in vivo for at least 3 mo. These cells expressed CD44(high), CD45RB(low), and were generated after multiple cell divisions, suggesting that anergy is not the result of insufficient proliferative stimuli. Whereas dendritic cells (DCs) from Ld-nOVA (DCs derived from transgenic mice (TgDCs)), which present rather low amount of the self-peptide, efficiently induced proliferation of DO11.10 T cells, divided T cells stimulated in vivo by TgDCs exhibited a lower memory response than T cells stimulated in vitro by peptide-pulsed DCs. Furthermore, we found that repeated transfer of either TgDCs or DCs derived from wild-type mice pulsed with a lower concentration of OVA(323-339) induced a lower response of DO11.10 T cells in Ag-free wild-type recipients than DCs derived from wild-type mice. These results suggest that peripheral tolerance to a nuclear autoantigen is achieved by continuous presentation of the self-peptide by DCs, and that the low expression level of the peptide might also be involved in the induction of hyporesponsiveness.  相似文献   

15.
It has been widely accepted that T cell activation requires two signals; one from the binding of the antigen/major histocompatibility complex to the T-cell receptor (TCR)/CD3 complex and the other from the interaction between a surface molecule on antigen presenting cells and its receptor on T cells. The second signal is considered as co-stimulatory and the B7/CD28 pair has been well studied as a prototype. Recently 4-1BB (CD137) has been characterized as another co-stimulatory molecule for T cell activation. However, unlike the CD28/B7 pair, 4-1BB and its ligand 4-1BBL constitute a member of the tumor necrosis factor (TNF) receptor/TNF pair superfamily. The signaling mechanism of 4-1BB has not been revealed in detail. To investigate whether 4-1BB takes the signaling pathways analogous to those for TNF receptors, we generated polyclonal antibodies against human 4-1BB and 4-1BBL and established stable transfectants of the receptor and the ligand with a high level of cell surface expression. Over-expression of h4-1BB was found to result in the activation of c-Jun N-terminal kinase (JNK) in the human embryonic kidney cell line 293. In T cells, it has been previously demonstrated that JNK activation requires dual signals such as the ligation of TCR/CD3 complex plus CD28 co-stimulation or PMA plus ionomycin. The JNK activation by 4-1BB in Jurkat T cells was also found to require stimulation of the TCR/CD3 complex, consistent with the notion that 4-1BB functions as a co-stimulatory molecule for T cell activation.  相似文献   

16.
We have used T cells from B7-1-deficient TCR transgenic DO11.10 mice to demonstrate a functional role for B7-1 on T cells. B7-1-deficient DO11.10 T cells produce more IL-4 than wild-type DO11.10 T cells, suggesting that B7-1 expressed by T cells regulates the differentiation of IL-4-producing cells. In addition, we found that IL-4 inhibits B7-1 expression by wild-type DO11.10 T cells. Our results suggest that there is a reciprocal relationship between B7-1 expressed on T cells and IL-4 production, which results in a modulatory feedback loop. When high levels of IL-4 are produced by T cells, B7-1 expression by T cells is inhibited, which allows amplification of IL-4 production by these T cells. When low levels of IL-4 are produced by T cells, B7-1 expression by these T cells is increased, and a further reduction in IL-4 production follows. However, in addition to being influenced by IL-4, B7-1 expression by T cells is affected by peptide concentration and by B7 costimulation from APCs. The studies presented here demonstrate that B7-1 on T cells as well as on APCs regulates IL-4 production. However, whereas B7-1 expression on APCs can promote IL-4 production, IL-4 production is inhibited by B7-1 on T cells.  相似文献   

17.
During an immune response a small number of rare Ag-specific clones proliferate extensively and decline, leaving a residual population for long-term memory. TCR transgenic (tg) CD4 T cells have been used widely to study the primary and memory response in vivo. We show here that naive TCR tg CD4 T cells from the DO11.10 strain transferred into wild type (wt) BALB/c recipients and not stimulated declined rapidly at the same rate as those primed in vivo by Ag. In the same recipients wt CD4 T cells survived. There was no evidence of an inherent defect in the tg T cells, which survived well when returned to DO11.10 recipients. Surprisingly, wt CD4 T cells declined rapidly in the same DO11.10 hosts. By depleting wt recipients of NK cells or CD8+ cells, the speed of reduction was slowed by half; rapid destruction was prevented completely by combing the two treatments. In contrast, preimmunization accelerated the loss of tg T cells. The results suggested that tg CD4 T cells were actively rejected by both NK and CD8 T cell responses. We consider whether, despite extensive backcrossing, tg T cells may retain genetic material (minor histocompatibility Ags) flanking the construct that compromises their survival in wt recipients.  相似文献   

18.
The intestinal immune response to oral Ags involves a complex multistep process. The requirements for optimal intestinal T cell responses in this process are unclear. LFA-1 plays a critical role in peripheral T cell trafficking and activation, however, its role in intestinal immune responses has not been precisely defined. To dissect the role of LFA-1 in intestinal immune responses, we used a system that allows for segregation of T cell migration and activation through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 TCR transgenic mice into wild-type BALB/c mice. We find that wild-type mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate decreases in the numbers of Ag-specific T cells in the intestinal lamina propria after oral Ag administration. We also find that in addition to its role in trafficking to intestinal secondary lymphoid organs, LFA-1 is required for optimal CD4(+) T cell proliferation in vivo upon oral Ag immunization. Furthermore, CD18(-/-) DO11.10 CD4(+) T cells primed in the intestinal secondary lymphoid organs demonstrate defects in up-regulation of the intestinal-specific trafficking molecules, alpha(4)beta(7) and CCR9. Interestingly, the defect in trafficking of CD18(-/-) DO11.10 CD4(+) T cells to the intestinal lamina propria persists even under conditions of equivalent activation and intestinal-tropic differentiation, implicating a role for CD18 in the trafficking of activated T cells into intestinal tissues independent of the earlier defects in the intestinal immune response. This argues for a complex role for CD18 in the early priming checkpoints and ultimately in the trafficking of T cells to the intestinal tissues during an intestinal immune response.  相似文献   

19.
Early events in peripheral regulatory T cell induction via the nasal mucosa   总被引:5,自引:0,他引:5  
Nasal application of soluble Ags leads to Ag-specific suppression of systemic immune responses. This tolerance can be transferred to naive mice by CD4(+) regulatory T cells (T(R) cells) from the spleen, but little is known about the induction of mucosal T(R) cells in vivo. To investigate the induction of T(R) cells in the nose-draining cervical lymph node (CLN), CD4(+) T cells from DO11.10 OVA TCR transgenic mice were transferred to BALB/c recipients. Within 48 h after nasal OVA application, CD4(+) DO11.10 T cells in CLN, but not in the peripheral lymph node, had divided. Similarly, nonmucosal (i.m.) OVA application also induced CD4(+) DO11.10 T cells to proliferate in the draining inguinal lymph node (ILN), yet more vigorously and with different kinetics than the CD4(+) DO11.10 T cells in CLN. Functional analysis revealed that only proliferating CD4(+) DO11.10 T cells from CLN, and not ILN, could transfer tolerance to naive recipients. CD4(+) DO11.10 T cells from CLN were phenotypically similar to CD4(+) DO11.10 T cells from ILN, however, in CLN a higher percentage of CD25(+) proliferating CD4(+) DO11.10 T cells were detected compared with ILN. CD25 is not a discriminative marker for mucosal T(R) cells because both CD25(+) and CD25(-) CD4(+) DO11.10 T cells from the CLN could suppress delayed type hypersensitivity responses in adoptive transfer. These findings demonstrate that although striking similarities exist between the differentiation of T(R) and effector T cells, this does not include their function. We are the first to demonstrate that functional T(R) cells, which reside within both CD25(+) and CD25(-) subsets, can be isolated from CLN as early as 3 days after nasal OVA application.  相似文献   

20.
《Cytokine》2010,51(3):253-259
OX40 is an inducible co-stimulatory molecule expressed by activated T cells. It plays an important role in the activation and proliferation of T lymphocytes. Recently, some co-stimulatory molecules have been shown to direct leukocyte trafficking. Chemotaxis is essential for achieving an effective immune response. CCL20 is an important chemoattractant produced by activated T cells. In this study, using DO11.10 mice whose transgenic T cell receptor specifically recognizes ovalbumin, we demonstrate that ovalbumin induces OX40 expression in CD4+ lymphocytes. Further stimulation of OX40 by OX40 activating antibody up-regulates CCL20 production. Both NF-κB dependent and independent signaling pathways are implicated in the induction of CCL20 by OX40. Finally, we primed the DO11.10 splenocytes with or without OX40 activating antibody in the presence of ovalbumin. Intranasal administration of the cell lysates derived from the cells with OX40 stimulation results in more severe leukocyte infiltration in the lung of DO11.10 mice, which is substantially attenuated by CCL20 blocking antibody. Taken together, this study has shown that activation of OX40 induces CCL20 expression in the presence of antigen stimulation. Thus, our results broaden the role of OX40 in chemotaxis, and reveal a novel effect of co-stimulatory molecules in orchestrating both T cell up-regulation and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号