首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
影响猪肉嫩度的遗传因素   总被引:4,自引:0,他引:4  
嫩度是猪肉品质的一个重要方面。影响猪肉嫩度的因素很多,遗传因素是改善猪肉嫩度的关键。本对肌纤维性状、钙蛋白酶蛋白水解系统和肌内脂肪的有关基因进行了论述,包括MyoD基因家族、钙调蛋白激酶(CaMK)基因、钙激中性蛋白酶(CAPN)基因、钙蛋白酶抑制蛋白(CAST)基因、心脏脂肪酸结合蛋白(H-FABP)基因、脂肪组织脂肪酸结合蛋白(F一FABP)基因、过氧化氢酶体激活增殖受体(PPARγ)基因以及与肌内脂肪有关的QTL。其中有些已被认为是肉嫩度的候选基因。对改善猪肉嫩度所面临的问题及研究前景进行了讨论。  相似文献   

2.
猪H-FABP基因多态性与肌内脂肪含量的关联分析   总被引:2,自引:0,他引:2  
以山西白猪为实验材料,采用索氏脂肪抽提法对其背最长肌的肌内脂肪含量进行了测定。根据心脏脂肪酸结合蛋白(heart fatty acid-binding protein,H-FABP)基因的PCR-RFLP多态性,应用SPSS软件,用最小二乘法拟合一般线性模型(GLM)分析了H-FABP基因的不同位点的基因型对肌内脂肪含量的影响。结果表明,基因型hh、dd、BB对肌内脂肪含量影响的效应值最大。证明H-FABP基因可以作为肌内脂肪含量的侯选基因。  相似文献   

3.
心型脂肪酸结合蛋白(heart fatty acid binding protein, H-FABP)的水平与影响肉质性状的肌内脂肪含量有关,鱼类H-FABP的表达水平对其肌内脂肪含量是否相关仍未见报道.本研究获得齐口裂腹鱼和鲤鱼心脏型脂肪酸结合蛋白基因序列,利用半定量RT-PCR分析其表达特性并测定肌内脂肪含量,比较H-FABP基因在不同生活环境的2种鲤科鱼肌内脂肪沉积中的作用.结果显示,齐口裂腹鱼和鲤鱼H-FABP基因的ORF为402 bp,编码133个氨基酸,它们的氨基酸序列相同,与人、猪、小鼠、斑马鱼、大西洋鲑、虹鳟等的同源性为71.3%~ 90%;H-FABP基因在2种鲤科鱼的心、肌肉、脂肪、肝、脑、脾、肾和鳃等组织中均有表达,肝中的表达量显著高于其它组织(P<0.05),H-FABP基因的肌肉表达谱在齐口裂腹鱼和鲤鱼中存在明显差异:齐口裂腹鱼中的表达随生长发育呈上升趋势,在大体重鱼(500 g)中的表达显著高于小体重鱼(P<0.05),其表达与肌内脂肪含量呈显著正相关(R=0.370,P<0.05);H-FABP基因在鲤鱼生长发育中呈下降趋势,而小体重鱼(50~60 g)中的表达显著高于其它大体重鱼(P<0.05),其表达与肌内脂肪含量呈显著负相关(R=-7.083,P<0.01).据此推测,齐口裂腹鱼和鲤鱼肌肉组织H-FABP基因表达与肌内脂肪关联性的差异可能与2种鱼的生活环境不同有关.  相似文献   

4.
综述了与鱼类脂肪性状密切相关的脂肪酸结合蛋白、肥胖基因及其蛋白受体、过氧化物酶体增殖物激活受体、脂蛋白脂酶、解偶联蛋白、黑素皮质素受体等基因在鱼类脂类代谢中的研究进展,探讨了在鱼类脂肪性状研究中存在的主要问题,并提出了今后的研究思路。  相似文献   

5.
近年来,国内外已对瘦肉性状相关基因进行了大量的研究,如肌生成抑制素基因、肌生成寒基因、ob基因及其受体基因(Leptin)、胰岛素样生长因子Ⅱ基因、脂肪酸结合蛋白基因等,该文综述了应用这5种调控因子提高瘦肉率的分子育种学机理及方法。  相似文献   

6.
目的研究磷酸酪氨酸互作结构域1(PID1)基因与肌内脂肪含量的关系,探究睾丸注射法在转基因动物制备中的可行性。方法将携带猪PID1基因的重组质粒pIRES2-acGFP-PID1与转染试剂共孵育后,对新西兰兔进行了睾丸打点注射试验。对繁殖的F1代个体进行了活体荧光检测、PCR和western blotting检测,以及抽样屠宰进行肌内脂肪含量等检测;将F1代阳性个体互交,繁殖了F2代兔,对其进行了阳性率检测以及肌内脂肪含量检测。结果外源PID1基因和荧光蛋白基因在后代中均成功表达,其中,F1代阳性率为35.88%,F2代阳性率为34.33%;转基因阳性兔与阴性和空白对照兔相比,PID1蛋白表达水平有所增加,肌内脂肪含量有显著提高(P0.05)。结论 PID1基因与肌内脂肪沉积密切相关,同时,进一步证明了睾丸注射法可以用于制备转基因动物,且外源基因可以稳定遗传。  相似文献   

7.
脂肪酸结合蛋白的研究进展   总被引:4,自引:0,他引:4  
脂脉酸结合蛋白(FABP)是一族小分子细胞内蛋白质,对长链脂肪酸有很高的亲和力,能把脂肪酸从细胞膜转运到细胞内利用位点,在长链脂肪酸的代谢中起重要作用。本文就脂肪酸结合蛋白的结构、功能及其对脂肪酸代谢调节方面的研究进行了综述,并阐述了猪脂肪酸结合蛋白基因地对肌内脂肪合成的影响。  相似文献   

8.
赵小玲  刘益平  李亮  蒋小松  杜华锐  朱庆 《遗传》2007,29(12):1483-1483―1490
对脂肪分化相关蛋白(Adipocyte Differentiation-Related Protein, ADFP)基因的外显子进行SNPs 检测, 探讨其作为鸡脂肪性状候选基因的可能性。实验以四川省畜牧科学研究院和大恒家禽育种有限公司培育的优质肉鸡新品系为素材, 采用PCR-SSCP的方法进行SNPs 检测和基因型的分析。结果找到3个SNPs位点: 4 079位由A→T(位点A)、4 843位由C→T(位点B)和7 070位由A→G(位点C)。单位点基因型对屠宰性状的遗传效应分析表明, 位点A的基因型对腿肌率、腹脂重、腹脂率和肌内脂肪含量有显著性影响(P < 0.05), 位点B的基因型对活重和屠体重均有显著性影响(P < 0.05), 位点C的基因型对胸肌重和肌内脂肪含量有显著性影响(P < 0.05), 对胸肌率有极显著性影响(P < 0.01)。初步推断ADFP基因可能是影响鸡脂肪性状的主效基因或与主效基因连锁, 推测可以利用多态位点A和C对鸡腹脂重、腹脂率和肌内脂肪含量进行标记辅助选择。  相似文献   

9.
脂肪沉积决定于脂肪酸合成、转运和分解代谢的动态平衡。为比较猪(Sus scrofa domesticus)不同脂肪部位脂质代谢差异和不同性别间的差别,筛选与脂肪沉积能力显著关联的相关酶基因,本研究检测大白猪(Large White pigs)脂质代谢相关生化指标、肌内脂肪(intramuscular fat)含量,皮下脂肪、腹部脂肪和肾周脂肪组织间脂肪酸合成酶基因ACC,脂肪酸转运酶基因CPT1A和CD36,以及脂肪酸分解酶基因HSL和LPL的转录表达水平,分析目标基因与血清生化指标和肌内脂肪含量的相关性,比较在不同脂肪组织间的基因表达差异。结果表明,血清甘油三酯(triglycerides)、总胆固醇(total cholesterol)和肌内脂肪含量在不同性别大白猪中均无显著性差异(P>0.05)。相关性分析表明,大白猪公猪腹部脂肪中ACC基因表达量与甘油三酯含量呈显著正相关(P<0.05),皮下脂肪中HSL基因表达量与甘油三酯含量呈显著负相关(P<0.05);大白猪母猪腹部脂肪中ACC基因表达量与甘油三酯含量呈极显著正相关(P<0.01)。实时定量PCR结...  相似文献   

10.
猪L-FABP基因的克隆、表达特征及遗传多态性研究   总被引:10,自引:0,他引:10  
FABPs属于脂结合蛋白超家族成员,是一类分子量较小而对脂肪酸有高亲和力的蛋白质,广泛存在于脊椎动物和非脊椎动物的细胞质中.FABPs担当细胞内脂肪酸的运输任务,它们与脂肪酸结合将其运输到脂肪酸氧化的位置、脂肪酸脂化成甘油三醋或磷脂的位置,或者进入细胞核内发挥其可能的调控功能.因此FABPs对脂类代谢具有重要的调控作用.本研究把L-FABP基因作为影响猪肌内脂肪含量的候选基因.为此,利用cDNA末端快速扩增(RACE)和PCR技术,克隆到猪肝脏型脂肪酸结合蛋白基因(L-FABP)的全长cDNA序列(GenBank登录号AY960623)和部分基因组序列(GenBank登录号DQ182323).猪L-FABP基因的cDNA序列全长518 bp,该序列包括起始密码子TGA和38 bp的5'末端非编码区(5'URT),终止密码子TAG和99 bp的3'末端非编码区(3'URT),在3'URT结构区域中包含polyA加尾信号序列AATAAA.猪L-FABP基因与其他FABPs基因一样,也由4个外显子(67 bp、173 bp、93 bp和51 bp)和3个内含子组成,内含子1和3的大小是1 679bp和565 bp,没有获得内含子2的序列,外显子和内含子剪接处符合GT/AG规律.应用Clustal W/X程序对猪L-FABP与其他物种的L-FABP进行多重序列比对,发现猪L-FABP与人、大鼠、鸡的L-FABP的相似性分别为89.8%、81.9%和72.4%.亲水性分析表明,猪L-FABP也是一个潜在的跨膜蛋白,在氨基酸残基57-65之间有一个明显的跨膜α螺旋.应用半定量RT-PCR分析发现,猪L-FABP在猪体组织中广泛存在,但在肝脏和小肠组织中表达量最为丰富.分析还发现,所克隆得到的编码区核苷酸序列与已知猪L-FABP基因的编码区核苷酸序列存在一定的变异,分别是外显子2中T→C(116位)、C→T(231位)、C→A(236位)和A→C(258位),演绎成氨基酸在Leu74Met存在差异.为进一步证实这些突变位点在猪群中真实存在,利用PCR-SSCP检测方法对4个猪种(藏猪、大河猪、雅南猪和约克夏)的157头个体的外显子2全序列进行SNP位点多态性片段的基因型分型,结果发现一个C→T的单核苷酸多态,等位基因频率在中国地方猪种(藏猪、大河猪、雅南猪)与国外约克夏猪种间存在极显著的差异(P<0.01).连锁分析发现,基因型CC的肌内脂肪含量(4.86±0.22%)显著的高于基因型CT(4.16±0.23%)和TT(4.05±0.27%)的肌内脂肪含量(P<0.05).因此,推测L-FABP基因可能是影响猪肌内脂肪含量的主效基因或与主效基因紧密连锁的标记基因,并且能够在分子标记辅助选择中用于对猪肌内脂肪含量的遗传改良.  相似文献   

11.
Intramuscular fat (IMF) content plays an important role in meat quality. Many genes involved in lipid and energy metabolism were identified as candidate genes for IMF deposition, since genetic polymorphisms within these genes were associated with IMF content. However, there is less information on the expression levels of these genes in the muscle tissue. This study aimed at investigating the expression levels of sterol regulating element binding protein-1c (SREBP-1c), diacylglycerol acyltransferase (DGAT-1), heart-fatty acids binding protein (H-FABP), leptin receptor (LEPR) and melanocortin 4 receptor (MC4R) genes and proteins in two divergent Banna mini-pig inbred lines (BMIL). A similar growth performance was found in both the fat and the lean BMIL. The fat meat and IMF content in the fat BMIL were significantly higher than in the lean BMIL, but the lean meat content was lower. The serum triacylglycerol (TAG) and free fatty acid (FFA) contents were significantly higher in the fat than in the lean BMIL. The expression levels of SREBP-1c, DGAT-1 and H-FABP genes and proteins in fat BMIL were increased compared to the lean BMIL. However, the expression levels of LEPR and MC4R genes and proteins were lower.  相似文献   

12.
13.
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.  相似文献   

14.
15.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

16.
Protein-mediated transport of exogenous long-chain fatty acids across the membrane has been defined in a number of different systems. Central to understanding the mechanism underlying this process is the development of the appropriate experimental systems which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both [1] exhibit saturable long-chain fatty acid transport at low ligand concentration; [2] have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus; and [3] can be easily manipulated using the tools of molecular genetics. In E. coli, this process requires the outer membrane-bound fatty acid transport protein FadL and the inner membrane associated fatty acyl CoA synthetase (FACS). FadL appears to represent a substrate specific channel for long-chain fatty acids while FACS activates these compounds to CoA thioesters thereby rendering this process unidirectional. This process requires both ATP generated from either substrate-level or oxidative phosphorylation and the proton electrochemical gradient across the inner membrane. In S. cerevisiae, the process of long-chain fatty acid transport requires at least the membrane-bound protein Fat1p. Exogenously supplied fatty acids are activated by the fatty acyl CoA synthetases Faa1p and Faa4p but unlike the case in E. coli, there is not a tight linkage between transport and activation. Studies evaluating the growth parameters in the presence of long-chain fatty acids and long-chain fatty acid transport profiles of a fat1 strain support the hypothesis that Fat1p is required for optimal levels of long-chain fatty acid transport.  相似文献   

17.
18.
In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the faa1Delta faa4Delta strain and encoding FAA1 and FAT1 in the faa1Delta fat1Delta strain. Multicopy FAA4 could not suppress the growth defect in the faa1Delta fat1Delta strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Delta faa1Delta and faa1Delta faa4Delta strains, respectively, indicating Faa1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2-mu plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing Faa1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and Faa1p or Faa4p.  相似文献   

19.
The fatty acid transport protein Fat1p functions as a component of the long-chain fatty acid transport apparatus in the yeast Saccharomyces cerevisiae. Fat1p has significant homologies to the mammalian fatty acid transport proteins (FATP) and the very long-chain acyl-CoA synthetases (VLACS). In order to further understand the functional roles intrinsic to Fat1p (fatty acid transport and VLACS activities), a series of 16 alleles carrying site-directed mutations within FAT1 were constructed and analyzed. Sites chosen for the construction of amino acid substitutions were based on conservation between Fat1p and the mammalian FATP orthologues and included the ATP/AMP and FATP/VLACS signature motifs. Centromeric and 2 mu plasmids encoding mutant forms of Fat1p were transformed into a yeast strain containing a deletion in FAT1 (fat1Delta). For selected subsets of FAT1 mutant alleles, we observed differences between the wild type and mutants in 1) growth rates when fatty acid synthase was inhibited with 45 microm cerulenin in the presence of 100 microm oleate (C(18:1)), 2) levels of fatty acid import monitored using the accumulation of the fluorescent fatty acid 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-S-indacene-3-dodecanoic acid and [(3)H]oleate, 3) levels of lignoceryl (C(24:0)) CoA synthetase activities, and 4) fatty acid profiles monitored using gas chromatography/mass spectrometry. In most cases, there was a correlation between growth on fatty acid/cerulenin plates, the levels of fatty acid accumulation, very long-chain fatty acyl-CoA synthetase activities, and the fatty acid profiles in the different FAT1 mutants. For several notable exceptions, the fatty acid transport and very long-chain fatty acyl-CoA synthetase activities were distinguishable. The characterization of these novel mutants provides a platform to more completely understand the role of Fat1p in the linkage between fatty acid import and activation to CoA thioesters.  相似文献   

20.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号