首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Changes in intracellular 3′,5′ cyclic AMP (cAMP) concentration regulate the development of natural competence in Haemophilus influenzae. In Escherichia coli, cAMP levels are modulated by a cAMP phosphodiesterase encoded by the cpdA gene. We have used several approaches to demonstrate that the homologous icc gene of H. influenzae encodes a functional cAMP phosphodiesterase and that this gene limits intracellular cAMP and thereby influences competence and other cAMP-dependent processes. In E. coli, expression of cloned icc reduced both cAMP-dependent sugar fermentation and β-galactosidase expression, as has been shown for cpdA. In H. influenzae, an icc null mutation increased cAMP-dependent sugar fermentation and competence development in strains where these processes are limited by mutations reducing cAMP synthesis. When endogenous production of cAMP was eliminated by a cya mutation, an icc strain was 10,000-fold more sensitive to exogenous cAMP than an icc+ strain. The icc strain showed moderately elevated competence under noninducing conditions, as expected, but had subnormal competence increases at onset of stationary phase in rich medium, and on transfer to a nutrient-limited medium, suggesting that excessive cAMP may interfere with induction. Consistent with this finding, a cya strain cultured in 1 mM cAMP failed to develop maximal competence on transfer to inducing conditions. Thus, by limiting cAMP levels, the H. influenzae cAMP phosphodiesterase may coordinate its responses to nutritional stress, ensuring optimal competence development.  相似文献   

3.
Oscillation of chemical signals is a common biological phenomenon, but its regulation is poorly understood. At the aggregation stage of Dictyostelium discoideum development, the chemoattractant cAMP is synthesized and released at 6-min intervals, directing cell migration. Although the G protein–coupled cAMP receptor cAR1 and ERK2 are both implicated in regulating the oscillation, the signaling circuit remains unknown. Here we report that D. discoideum arrestins regulate the frequency of cAMP oscillation and may link cAR1 signaling to oscillatory ERK2 activity. Cells lacking arrestins (adcBC) display cAMP oscillations during the aggregation stage that are twice as frequent as for wild- type cells. The adcBC cells also have a shorter period of transient ERK2 activity and precociously reactivate ERK2 in response to cAMP stimulation. We show that arrestin domain–containing protein C (AdcC) associates with ERK2 and that activation of cAR1 promotes the transient membrane recruitment of AdcC and interaction with cAR1, indicating that arrestins function in cAR1-controlled periodic ERK2 activation and oscillatory cAMP signaling in the aggregation stage of D. discoideum development. In addition, ligand-induced cAR1 internalization is compromised in adcBC cells, suggesting that arrestins are involved in elimination of high-affinity cAR1 receptors from cell surface after the aggregation stage of multicellular development.  相似文献   

4.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

5.
In the model organism Escherichia coli, Min proteins are involved in regulating the division of septa formation. The computational genome analysis of Helicobacter pylori, a gram-negative microaerophilic bacterium causing gastritis and peptic ulceration, also identified MinC, MinD, and MinE. However, MinC (HP1053) shares a low identity with those of other bacteria and its function in H. pylori remains unclear. In this study, we used morphological and genetic approaches to examine the molecular role of MinC. The results were shown that an H. pylori mutant lacking MinC forms filamentous cells, while the wild-type strain retains the shape of short rods. In addition, a minC mutant regains the short rods when complemented with an intact minCHp gene. The overexpression of MinCHp in E. coli did not affect the growth and cell morphology. Immunofluorescence microscopy revealed that MinCHp forms helix-form structures in H. pylori, whereas MinCHp localizes at cell poles and pole of new daughter cell in E. coli. In addition, co-immunoprecipitation showed MinC can interact with MinD but not with FtsZ during mid-exponential stage of H. pylori. Altogether, our results show that MinCHp plays a key role in maintaining proper cell morphology and its function differs from those of MinCEc.  相似文献   

6.
7.
8.
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of E. coli was much improved by rewiring its global regulator cAMP receptor protein (CRP), which is reported to regulate 444 genes. Error-prone PCR method was employed to modify crp and the mutagenesis libraries (~3×106) were subjected to M9 minimal medium supplemented with 5–10 g/L sodium acetate for selection. Mutant A2 (D138Y) was isolated and its growth rate in 15 g/L sodium acetate was found to be 0.083 h-1, much higher than that of the control (0.016 h-1). Real-time PCR analysis via OpenArray® system revealed that over 400 CRP-regulated genes were differentially expressed in A2 with or without acetate stress, including those involved in the TCA cycle, phosphotransferase system, etc. Eight genes were chosen for overexpression and the overexpression of uxaB was found to lead to E. coli acetate sensitivity.  相似文献   

9.
The cAMP receptor protein (CRP) requires cAMP for an allosteric change and regulates more than 150 genes in Escherichia coli. In this study, the modular half of cAMP receptor protein was used to investigate the allosteric signal transmission pathway induced by cAMP binding. The activation of CRP upon cAMP binding is indicated to be realignment of the two subunits within the CRP dimer. The interaction of loop 3 and Phe136 do not involve in signal transmission.  相似文献   

10.
11.
《Cellular signalling》2014,26(2):453-459
Amoebas survive environmental stress by differentiating into encapsulated cysts. As cysts, pathogenic amoebas resist antibiotics, which particularly counteracts treatment of vision-destroying Acanthamoeba keratitis. Limited genetic tractability of amoeba pathogens has left their encystation mechanisms unexplored. The social amoeba Dictyostelium discoideum forms spores in multicellular fruiting bodies to survive starvation, while other dictyostelids, such as Polysphondylium pallidum can additionally encyst as single cells. Sporulation is induced by cAMP acting on PKA, with the cAMP phosphodiesterase RegA critically regulating cAMP levels. We show here that RegA is deeply conserved in social and pathogenic amoebas and that deletion of the RegA gene in P. pallidum causes precocious encystation and prevents cyst germination. We heterologously expressed and characterized Acanthamoeba RegA and performed a compound screen to identify RegA inhibitors. Two effective inhibitors increased cAMP levels and triggered Acanthamoeba encystation. Our results show that RegA critically regulates Amoebozoan encystation and that components of the cAMP signalling pathway could be effective targets for therapeutic intervention with encystation.  相似文献   

12.
The activity of adenylate cyclase of Escherichia coli measured in toluene-treated cells under standard conditions is subject to control by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Sugars such as glucose, which are transported by the PTS, will inhibit adenylate cyclase provided the PTS is functional. An analysis was made of the properties of E. coli strains carrying mutations in PTS proteins. Leaky mutants in the PTS protein HPr are similar to wild-type strains with respect to cAMp regulation; adenylate cyclase activity in toluene-treated cells and intracellular cAMP levels are in the normal range. Furthermore, adenylate cyclase in toluene-treated cells of leaky HPr mutants is inhibited by glucose. In contrast, mutations in the PTS protein Enzyme I result in abnormalities in cAMP regulation. Enzyme I mutants generally have low intracellular cAMP levels. Leaky Enzyme I mutants show an unusual phosphoenolpyruvate-dependent activation of adenylate cyclase that is not seen in Enzyme I+ revertants or in Enzyme I deletions. A leaky Enzyme I mutant exhibits changes in the temperature-activity profile for adenylate cyclase, indicating that adenylate cyclase activity is controlled by Enzyme I. Temperature-shift studies suggest a functional complex between adenylate cyclase and a regulator protein at 30 °C that can be reversibly dissociated at 40 °C. These studies further support the model for adenylate cyclase activation that involves phosphoenolpyruvate-dependent phosphorylation of a PTS protein complexed to adenylate cyclase.  相似文献   

13.
14.
15.
YdiV, a degenerate EAL domain protein, represses motility by interacting with FlhD to abolish FlhDC interaction with DNA. Here, we demonstrate that deletion of ydiV dysregulates coordinate control of motility and adherence by increasing adherence of Escherichia coli CFT073 to a bladder epithelial cell line by specifically increasing production of P fimbriae. Interestingly, only one of the two P fimbrial operons, pap_2, present in the genome of E. coli CFT073 was upregulated. This derepression of the pap_2 operon is abolished following deletion of either cya or crp, demonstrating cyclic AMP (cAMP)-dependent activation of the P fimbrial operon. However, the absence of YdiV does not affect the gene expression of cya and crp, and loss of SdiA in the ydiV mutant does not affect the derepression of the pap_2 operon, suggesting that YdiV control of adherence acts in response to cAMP levels. Deletion of ydiV increases motility by increasing expression of fliA, suggesting that in E. coli CFT073, YdiV regulates motility by the same mechanism as that described previously for commensal E. coli strains. Furthermore, analysis of site-directed mutations found two putative Mg2+-binding residues of four conserved YdiV residues (E29 and Q219) that were involved in regulation of motility and FliC production, while two conserved c-di-GMP-binding residues (D156 and D165) only affected motility. None of the four conserved YdiV residues appeared to affect regulation of adherence. Therefore, we propose a model in which a degenerate EAL, YdiV, utilizes different domains to regulate motility through interaction with FlhD and adherence to epithelial cells through cAMP-dependent effects on the pap_2 promoter.  相似文献   

16.
17.

Background

The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA).

Results

In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS.

Conclusion

GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号