首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed two lines of guinea pigs, one as model animals for bronchial asthma with bronchial hypersensitivity and the other with hyposensitivity as a control. In the last four years, the bronchial hypersensitive line (BHS) and hyposensitive line (BHR), both derived from Hartley strain guinea pigs, have been selected by using bronchial reactivity to acetylcholine and to histamine as parameters. Both lines have reached the F6 generation. The following results were obtained with the two lines: 1) Sib and cous in matings, and mating of selected consanguineous individuals were adopted in breeding BHS and BHR. The breeding started with six families, each, but in the F6 generation the number of families decreased to two in each line. 2) Appearance rates of hyper- or hyposensitivity to acetylcholine and histamine increased with successive generations in both lines, which had been completely separated by the F6 generation. 3) Coefficients of inbreeding in BHS and BHR in the F6 generation ranged from 42% to 45% in the former and 42% in the latter. 4) Heritabilities (h2) of BHS and BHR for the appearance rates of sensitivity to acetylcholine were presumed to be 0.54 in the former and 0.69 in the latter. 5) No difference in the body weight of 0, 20, and 40 day-old BHS was observed in any generation. On the other hand, the body weight of 20 and 40 day-old BHR tended to decrease with successive generations. 6) Mean litter sizes of BHS and BHR in each of the generations ranged from 2.24 to 3.47 animals in the former and from 2.63 to 3.38 animals in the latter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cough elicitation and major physiological factors influencing cough occurrence were investigated in congenitally bronchial-hypersensitive (BHS) and -hyposensitive (BHR) guinea pigs exposed to citric acid (0.3 M) aerosol for 10 min. The number of cough in BHS was significantly larger than in BHR, while the latency to cough in BHS was significantly shorter than in BHR. Pretreatment with atropine (0.2%), lidocaine (2%) or salbutamol (0.1%) aerosol and desensitization of C-fibers with capsaicin (100 mg/kg) decreased the cough numbers in both BHS and BHR. The salbutamol, atropine and capsaicin pretreatments prolonged the cough latency in BHS, but only salbutamol prolonged the latency in BHR. After salbutamol pretreatment all BHR guinea pigs exhibited cough, while 66.7% of BHS guinea pigs exhibited it. Vagal blocking by atropine suppressed coughing in both BHS and BHR. Only a small number (33.3%) of BHR guinea pigs and no BHR guinea pigs exhibited a cough response after capsaicin and lidocaine pretreatment whereas many BHS guinea pigs still produced cough after such pretreatment. The present study demonstrated that the cough responsiveness to citric acid aerosol was significantly higher in BHS than in BHR. It was revealed that airway smooth muscle contraction and functional and/or morphological development of airway nervous receptors, especially C-fiber endings, contributed to aggravation of coughing in BHS.  相似文献   

3.
We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), locomotor activity (LA) and autonomic nervous activity in bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs. For this purpose, HR, BT, LA, and electrocardiogram (ECG) were recorded from conscious and unrestrained guinea pigs using a telemetry system. Autonomic nervous activity was analyzed by power spectral analysis of heart rate variability. Nocturnal patterns, in which the values in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed in HR, BT and LA in both strains of guinea pigs. The autonomic nervous activity in BHS guinea pigs showed a daily pattern, although BHR guinea pigs did not show such a rhythmicity. The high frequency (HF) power in BHS guinea pigs was higher than that in BHR guinea pigs throughout the day. Moreover, the low frequency/high frequency (LF/HF) ratio in BHS guinea pigs was lower than that in BHR guinea pigs throughout the day. These results suggest that parasympathetic nervous activity may be predominant in BHS guinea pigs.  相似文献   

4.
The expression balance of M2 and M3 muscarinic receptor subtypes on the pathogenesis of airway hyperresponsiveness was investigated by using two congenitally related strains of guinea pigs, bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR). CCh-induced airway responses in vivo and in vitro were investigated by comparing the effects of muscarinic receptor subtype antagonists, and the relative amounts of M2 and M3 muscarinic receptor mRNA in tracheal smooth muscle and lung tissue were investigated. After treatment with muscarinic receptor subtype antagonists, the ventilatory mechanics (VT, Raw, and Cdyn) of response to CCh aerosol inhalation were measured by the bodyplethysmograph method. The effects of these antagonists on CCh-induced tracheal smooth muscle contraction were also investigated. The effects of M2 muscarinic receptor blockade were less but the effects of M3 muscarinic receptors blockade on the airway contractile responses were greater in BHS than in BHR. In M3 muscarinic receptor blockades, CCh-induced tracheal contractions in BHS were significantly greater than those in BHR. In tracheal smooth muscle from BHS, the relative amount of M2 muscarinic receptors mRNA was less but that of M3 muscarinic receptor mRNA was more than those in BHR. These results suggest that the high ACh level as a consequence of dysfunction of M2 muscarinic autoreceptors and the excessive effect of M3 muscarinic receptors on the airway smooth muscle may play an important role in the pathogenesis of airway hyperresponsiveness.  相似文献   

5.
It is proposed the link between the hyperactivity of NMDA receptors and airway hyperresponsiveness. We investigated the effect of agents modulating the activity of NMDA receptors in the ovalbumin-induced airway hyperreactivity in guinea pigs. The airways hyperreactivity was influenced by the agonist (NMDA) and selective antagonist - competitive (AP-5) and non-competitive (MK-801) of NMDA receptors. Airway responsiveness to histamine or acetylcholine was evaluated in in vitro conditions. NMDA administration caused the increase of tracheal smooth muscle response in ovalbumin-induced hyperreactivity to acetylcholine. MK 801 as well as AP-5 provoked the decrease of reactivity mainly to acetylcholine in tracheal smooth muscle, while the former, non-competitive antagonist was more effective. We recorded more pronounced response in tracheal than in lung tissue smooth muscle with more considerable response to acetylcholine than to histamine. The results of experiments show the modification of airway smooth muscles responses by agents modulating the activity of NMDA receptors. They confirm the possibility of NMDA receptors participation in experimental airway hyperreactivity. The results enlarge information regarding the link of the inflammatory diseases and glutamatergic system.  相似文献   

6.
Nitric oxide (NO) is an important endogenous mediator involved in many biological functions in both physiological and pathological conditions. Many of studies suggest that high level of NO may play a role in the pathogenesis of various diseases including respiratory diseases with bronchial hyper-reactivity (BHR). The aim of our study was to examine the relationship between NO production and BHR. The reactivity of tracheal and lung tissue smooth muscle to histamine and acetylcholine was measured in vitro in male guinea pigs pre-treated with NO synthase (NOS) inhibitors. The drugs were administered in vivo during either 3 or 17 days. Furthermore, the animals were exposed in vivo to the toluene vapours after administration of agents. NOS inhibitors showed mainly beneficial effect in the presented study. They decreased the hyper-reactivity of the tracheal and lung tissue smooth muscle evoked by toluene. The decrease was dependent on the duration of their administration and on the type of inhibitor. Short-term administration of inhibitors was more effective than long-term one. A more significant effect was recorded after the pre-treatment with non-selective inhibitor L-NAME. The results showed possible participation of constitutive forms of NOS in the BHR.  相似文献   

7.
To clarify the effect of acetylcholinesterase (AChE) on the pathogenesis of airway hyperresponsiveness, AChE activities in tracheal smooth muscle and lung tissue from congenitally bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs were compared. For this purpose, AChE activities were determined by measuring the rate of absorbance of tissue homogenate. Relative amounts of AChE mRNA were also evaluated by the RT-PCR method. In both tracheal smooth muscle and lung tissue from BHS, the AChE activity and the relative amount of AChE mRNA were less than those in BHR. These results suggest that the reduced AChE activity is at least a candidate for inducing airway hyperresponsiveness.  相似文献   

8.
止嗽散药理作用研究   总被引:12,自引:0,他引:12  
为比较止嗽散及其改进后中药复方的药理作用,用小鼠氨水引咳法进行镇咳实验;祛痰作用采用小鼠肺酚红排泌法;实验性支气管痉挛性哮喘采用豚鼠组胺和乙酰胆碱混合喷雾引喘法。实验表明,止嗽散可明显延长小鼠引咳潜代期,减少咳嗽次数,增加酚红排泌量,但平喘作用不明显;改进方具有明显的镇咳、化痰作用外,还可延长豚鼠引喘潜伏期。  相似文献   

9.
Chronic eosinophilic bronchitis and bronchial hyperresponsiveness have been considered to be the fundamental features of bronchial asthma. However, the role of airway eosinophils in bronchial responsiveness in vivo has not been fully discussed. The aim of this study was to investigate the direct effect of airway eosinophil accumulation on bronchial responsiveness in vivo. Guinea pigs were transnasally treated with platelet activating factor (PAF) or vehicle twice a week for a total of 3 weeks. Anesthetized guinea pigs were surgically cannulated and artificially ventilated 48 h after the last administration of PAF or vehicle. Ten minutes after the installation of artificial ventilation, ascending doses of histamine were inhaled. In a subsequent study, selective inhibitors of diamine oxidase and histamine N-methyltransferase were intravenously administered before the histamine inhalation in the PAF-treated animals. Next study was conducted 20 min after treatment with indomethacin in this study line. Finally, ascending doses of methacholine were inhaled in our animal model. Proportion of eosinophils and the number of nuclear segmentation in bronchoalveolar lavage fluid significantly increased in guinea pigs treated with PAF compared with vehicle and this finding was confirmed histologically. Nevertheless, bronchial responsiveness to inhaled histamine, but not methacholine, was significantly decreased by the PAF treatment. This bronchoprotective effect induced by PAF remained following aminoguanidine and histamine N-methyltransferase administration, but abolished by treatment of indomethacin. These results suggest that in vivo airway eosinophils may reduce nonspecific bronchial responsiveness through production of inhibitory or bronchoprotective prostanoids, but not through histaminase production.  相似文献   

10.
Protease-activated receptors are G protein-coupled receptors activated by serine-proteases. Protease-activated receptor 2 is involved in the regulation of airway smooth muscle tone but its effects vary according to species and experimental conditions. We determined the effects of protease-activated receptor 2 activation on smooth muscle tone and airway reactivity to histamine in guinea pigs and smoking or non-smoking humans. The effects of trypsin and protease-activated receptor activating peptide on the isometric tension and response to histamine of guinea pig tracheal and human bronchial rings were studied. Human tissues were obtained from 6 smokers and 4 non-smokers. We assessed the effects of epithelial removal, inhibitors of cyclooxygenases, nitric oxide synthases, neutral endopeptidase and antagonists of acetylcholine, histamine, bradykinin and tachykinin receptors. Bronchomotor responses to protease-activated receptor 2 activation were variable in guinea pig, in half of animals PAR2 activation induced smooth muscle relaxation through the epithelial release of prostanoids but not of nitric oxide. In human airways, protease-activated receptor 2 activation reduced responsiveness to histamine in bronchial rings from smokers but increased responsiveness in bronchi from non-smokers. This study demonstrates an influence of tobacco smoking on the effect of protease-activated receptor 2 activation on airway responsiveness in humans, with an increased protection against histamine-induced contractions, probably through an increased epithelial release of prostanoids. The role of airway protease-activated receptor 2 may be to maintain smooth muscle tone homeostasis.  相似文献   

11.
At 1 hr to 14 days after total-body exposure of guinea pigs to 3.0 Gy 60Co, changes were detected in prostaglandin concentrations in bronchial airway tissues. At 3 hr postexposure, tissue levels of PGE were significantly elevated, while at 48 hr transiently elevated levels of PGF2 alpha were observed. By 72 hr, levels returned to control values. Airway synthesis of thromboxane B2 in irradiated animals did not differ from that in controls. Also assessed were the capacities of bronchial airway preparations to respond to H-1 receptor stimulation by the exogenous addition of histamine or transmembrane divalent cation transport stimulation with ionophore. Tissues from irradiated animals demonstrated alterations in the amount and type of prostaglandins generated, varying with time postirradiation.  相似文献   

12.
Effects of phospholipase A2 on numbers of histamine H1 receptors and muscarinic acetylcholine receptors were estimated in guinea pig lungs. Histamine H1 and muscarinic acetylcholine receptors in lung membranes were studied by the direct binding technique using 3H-pyrilamine and 3H-quinuclidinyl benzilate, respectively. The control group had two orders (high-affinity and low-affinity) of binding sites of histamine H1 receptors. Pretreatment of lung membranes with phospholipase A2 destroyed high-affinity binding sites, and these sites could not be detected after treatment. Low-affinity sites were not affected by the treatment. In contrast, the numbers of muscarinic acetylcholine receptors did not change significantly in spite of the addition of phospholipase A2. These results indicate that resistance of receptors against phospholipase A2 treatment varies among receptors and even between the binding sites in the same receptor. These variations might modulate pathological conditions associated with inflammation in which phospholipase is activated. Easy establishment of histamine tachyphylaxis might be explained by this mechanism.  相似文献   

13.
SSR 146977 is a potent and selective antagonist of the tachykinin NK3 receptor. In Chinese hamster ovary cells expressing the human tachykinin NK3 receptor, SSR 146977 inhibited the binding of radioactive neurokinin B to NK3 receptors (Ki = 0.26 nM), senktide (10 nM) induced inositol monophosphate formation (IC50 = 7.8-13 nM), and intracellular calcium mobilization (IC50 = 10 nM). It antagonized [MePhe7]neurokinin B induced contractions of guinea pig ileum (pA2 = 9.07). Senktide (30 nM) induced firing rate increase of noradrenergic neurons in the guinea pig locus coeruleus and dopaminergic neurons in the guinea pig substantia nigra was also blocked by SSR 146977 (50 and 100 nM, respectively). In vivo, in the respiratory system, SSR 146977 inhibited bronchial hyperresponsiveness to acetylcholine, bronchial microvascular permeability hypersensitivity to histamine (doses of 0.1-1 mg/kg i.p.), and cough (doses of 0.03-1 mg/kg i.p.) provoked by citric acid in guinea pigs. In the central nervous system, SSR 146977 inhibited turning behaviour (ID50 = 0.2 mg/kg i.p. and 0.4 mg/kg p.o.) and prevented the decrease of locomotor activity (10 and 30 mg/kg i.p) mediated by the stimulation of NK3 receptors in gerbils. In guinea pigs, SSR 146977 antagonized senktide-induced acetylcholine release in the hippocampus (0.3 and 1 mg/kg i.p) and norepinephrine release in the prefrontal cortex (0.3 mg/kg i.p.). It also prevented haloperidol-induced increase of the number of spontaneously active dopamine A10 neurons (1 and 3 mg/kg i.p.).  相似文献   

14.
Bronchial hyperresponsiveness can be produced experimentally after inhalation of numerous nonimmunospecific stimuli; our objective was to determine whether acrolein, a component of cigarette smoke, could increase bronchial reactivity to intravenously administered acetylcholine in guinea pigs. Bronchial responsiveness was assessed twice before and 1, 2, 6, and 24 h after exposures to less than or equal to 0.01 (sham), 0.31, 0.67, 0.94, or 1.26 parts per million for 2 h (5-7 guinea pigs/group). To examine the possible relationships of responsiveness to inflammatory mediator release and cellular infiltration, bronchoalveolar lavage was performed in another 30 guinea pigs before (control) and 0, 1, 2, 6, or 24 h after exposures. Pulmonary resistance was increased immediately after exposure (5 min) and returned to control values within 30-60 min. Increased bronchial responsiveness was evident within 1 h and became maximal 2-4 h after exposure. The acetylcholine dose necessary to double resistance decreased from 104.2 +/- 7.3 to 79.6 +/- 15.9 at 1 h and was 32.5 +/- 7.9 at 2 h and 32.8 +/- 7.6 micrograms.kg-1 at 6 h. Increases in two eicosanoids, thromboxane B2 (from 167 +/- 21 to 314 +/- 77 pg/ml) and prostaglandin F2 alpha (from 98 +/- 20 to 285 +/- 62 pg/ml) occurred immediately after exposure, whereas an influx of neutrophils occurred 24 h later (from 2.2 +/- 1.2 to 11.3 +/- 3.6%). These temporal relationships suggest that neutrophil infiltration may be a sufficient but not a necessary condition for the onset of bronchial hyperresponsiveness and that injury to cells normally present in the lung are responsible for the mediators thought to influence bronchial responsiveness.  相似文献   

15.
Airway hyperreactivity in antigen-challenged animals is mediated by eosinophil major basic protein (MBP) that blocks inhibitory M(2) muscarinic receptors on parasympathetic nerves, increasing acetylcholine release onto M(3) muscarinic receptors on airway smooth muscle. Acutely, anticholinergics block hyperreactivity in antigen-challenged animals and reverse asthma exacerbations in the human, but are less effective in chronic asthma. We tested whether atropine, given before antigen challenge, affected hyperreactivity, M(2) receptor function, eosinophil accumulation, and activation. Sensitized guinea pigs received atropine (1 mg/kg ip) 1 h before challenge and 6 h later. Twenty-four hours after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Airway reactivity to electrical stimulation of the vagi and to intravenous acetylcholine was not altered by atropine pretreatment in nonsensitized animals, indicating that atropine was no longer blocking postjunctional muscarinic receptors. Antigen challenge induced airway hyperreactivity to vagal stimulation that was significantly potentiated by atropine pretreatment. Bronchoconstriction induced by acetylcholine was not changed by antigen challenge or by atropine pretreatment. M(2) receptor function was lost in challenged animals but protected by atropine pretreatment. Eosinophils in bronchoalveolar lavage and within airway tissues were significantly increased by challenge but significantly reduced by atropine pretreatment. However, extracellular MBP in challenged airways was significantly increased by atropine pretreatment, which may account for reduced eosinophils. Depleting eosinophils with antibody to IL-5 before challenge prevented hyperreactivity and significantly reduced MBP in airways of atropine-pretreated animals. Thus atropine pretreatment potentiated airway hyperreactivity by increasing eosinophil activation and degranulation. These data suggest that anticholinergics enhance eosinophil interactions with airway nerves.  相似文献   

16.
To investigate whether endogenous beta-adrenergic stimulation or cyclooxygenase products normally affect muscarinic reactivity in conscious, spontaneously breathing guinea pigs, we measured specific airway resistance (SRaw) during acetylcholine (ACh) infusion before and after treatment with propranolol (10 mg/kg ip) or indomethacin (30 mg/kg ip). Airway reactivity was assessed by measuring changes in SRaw upon increasing ACh infusion. We found that propranolol treatment increased reactivity to parenteral ACh, but did not change baseline SRaw. Furthermore, propranolol reduced the range in muscarinic reactivity for the group, and it enhanced thr reproducibility of measurements in individual animals. In contrast, indomethacin had no effect on either baseline SRaw or muscarinic reactivity. Our results suggest that beta-blockade of endogenous adrenergic stimulation increases the muscarinic reactivity of guinea pig airways, but does not influence resting airway tone. It appears that propranolol treatment allows a more reproducible assessment of muscarinic reactivity in the guinea pig. In contrast, cyclooxygenase products do not seem to significantly affect baseline airway resistance, reactivity, or reproducibility in the guinea pig.  相似文献   

17.
L Ballati  S Evangelista  S Manzini 《Life sciences》1992,51(11):PL119-PL124
The effect of repeated weekly antigen challenges by aerosol on bronchopulmonary responses to ACh, histamine, neurokinin A or atropine-resistant (NANC) component of vagal stimulation, has been studied in guinea pigs. Bronchospastic responses were measured in anaesthetized animals, 7 days after the last challenge with antigen (or vehicle). No difference was observed between control and antigen challenged guinea pigs in their responsiveness to acetylcholine (1-300 mumol kg-1 i.v.) or histamine (1-300 mumol kg-1 i.v.). On the other hand, amplitude of bronchospasm induced by neurokinin A (1-3 mumol kg-1 i.v.) or NANC vagal stimulation (20 Hz, 1 msec, 10 V, trains of 5-20 sec) was significantly increased in guinea pigs previously challenged with antigen, as compared to controls. These results suggest that repetitive antigen exposure in sensitized guinea pigs generates an increase in the responsiveness to exogenously administered or endogenously released tachykinins, at a time when no generalized hyperresponsiveness to other spasmogens could be observed.  相似文献   

18.
The effects of different sensitization and allergen provocation regimens on the development of allergen-induced bronchial hyperreactivity (BHR) to histamine were investigated in conscious, unrestrained guinea-pigs. Similar early and late phase asthmatic reactions, BHR for inhaled histamine after the early (6 h) as well as after the late reaction (24 h), and airway inflammation were observed after a single allergen provocation in animals sensitized to produce mainly IgG or IgE antibodies, respectively. Repeating the allergen provocation in the IgE-sensitized animals after 7 days, using identical provocation conditions, resulted in a similar development of BHR to histamine inhalation. Repetition of the allergen provocation during 4 subsequent days resulted in a decreased development of BHR after each provocation, despite a significant increase in the allergen provocation dose necessary to obtain similar airway obstruction. The number of inflammatory cells in the bronchoalveolar lavage was not significantly changed after repeated provocation, when compared with a single allergen provocation. Finally, we investigated allergen-induced bronchial hyperreactivity by repetition of the sensitization procedure at day 7 and 14 (booster), followed by repeated allergen provocation twice a week for 5 weeks. Surprisingly, no BHR to histamine could be observed after either provocation, while the number of inflammatory cells in the bronchoalveolar lavage fluid after 5 weeks was enhanced compared with controls. These data indicate that both IgE and IgG sensitized guinea-pigs may develop bronchial hyperreactivity after a single allergen provocation. Repeated allergen exposure of IgE sensitized animals causes a gradual fading of the induced hyperreactivity despite the on-going presence of inflammatory cells in the airways, indicating a mechanism of reduced cellular activation.  相似文献   

19.
Airway responsiveness to histamine aerosol and lung prostaglandin generation were investigated in normal, partially vitamin C deficient and scorbutic guinea pigs. The ascorbic acid content of the lung expressed as microgram/100 mg wet weight lung parenchyma decreased from 22.1 +/- 1.8 (mean +/- SE) in the control group to 9.0 +/- 1.4 and 1.8 +/- 0.4 in tissues from partially ascorbic acid deficient and scorbutic animals, respectively. Guinea pigs on low and ascorbic acid deficient diets developed significant airway hyperresponsiveness to histamine aerosol after 3 and 4 weeks. Indomethacin (30 mg/Kg, i.p.) further increased the airway hyperresponsiveness in scorbutic animals but was without effect in control animals. Prostaglandin generation from different parts of the lung was significantly changed by the diets. However, airway hyperresponsiveness was not directly attributable to altered prostanoid generation. Scorbutic conditions did not alter the electrophysiological characteristics of airway smooth muscle namely, resting membrane potential and electrogenic sodium pump activity. In summary, ascorbic acid deficiency causes airway hyperresponsiveness to histamine in guinea pigs. This alteration seems not to be related to an altered prostaglandin generation by the lung or to the electrophysiological properties of airway smooth muscle.  相似文献   

20.
Tobacco smoke (TS) exposure induces airway hyperreactivity, particularly in sensitive individuals with asthma. However, the mechanism of this airway hyperreactivity is not well understood. To investigate the relative susceptibility of atopic and nonatopic individuals to TS-induced airway hyperreactivity, we exposed ovalbumin (OA)-sensitized and nonsensitized guinea pigs to TS exposure (5 mg/l air, 30-min exposure, 7 days/wk for 120-156 days). Two similar groups exposed to compressed air served as controls. Airway reactivity was assessed as an increase in enhanced pause (Penh) units using a plethysmograph that allowed free movement of the animals. After 90 days of exposure, airway reactivity increased in OA-TS guinea pigs challenged with capsaicin, bradykinin, and neurokinin A fragment 4--10 aerosols. In addition, substance P content increased in lung perfusate of OA-TS guinea pigs in response to acute TS challenge compared with that of the other groups. Airway hyperirritability was not enhanced by phosphoramidon but was attenuated by a cocktail of neurokinin antagonists, nor was airway hyperreactivity observed after either methacholine or histamine challenge in OA-TS guinea pigs. Chronic TS exposure enhanced neither airway reactivity to histamine or methacholine nor contractility of isolated tracheal rings. In conclusion, chronic TS exposure increased airway reactivity to capsaicin and bradykinin aerosol challenge, and OA-TS guinea pigs were most susceptible to airway dysfunction as the result of exposure to TS compared with the other groups. Increased airway reactivity to capsaicin suggests a mechanism involving neurogenic inflammation, such as increased activation of lung C fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号