首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics and pathways of CO2 movements across the membranes of mitochondria respiring in vitro in a CO2/HCO-3 buffer at concentrations close to that in intact rat tissues were continuously monitored with a gas-permeable CO2-sensitive electrode. O2 uptake and pH changes were monitored simultaneously. Factors affecting CO2 entry were examined under conditions in which CO2 uptake was coupled to electrophoretic influx of K+ (in the presence of valinomycin) or Ca2+. The role of mitochondrial carbonic anhydrase (EC 4.2.1.1) in CO2 entry was evaluated by comparison of CO2 uptake by rat liver mitochondria, which possess carbonic anhydrase, versus rat heart mitochondria, which lack carbonic anhydrase. Such studies showed that matrix carbonic anhydrase activity is essential for rapid net uptake of CO2 with K+ or Ca2+. Studies with acetazolamide (Diamox), a potent inhibitor of carbonic anhydrase, confirmed the requirement of matrix carbonic anhydrase for net CO2 uptake. It was shown that at pH 7.2 the major species leaving respiring mitochondria is dissolved CO2, rather than HCO-3 or H2CO3 suggested by earlier reports. Efflux of endogenous CO2/HCO-3 is significantly inhibited by inhibitors of the dicarboxylate and tricarboxylate transport systems of the rat liver inner membrane. The possibility that these anion carriers mediate outward transport of HCO-3 is discussed.  相似文献   

2.
Mn2+ uptake in the chick chorioallantoic membrane, an embryonic epithelial tissue which transports Ca2+ in vivo was studied using electron paramagnetic resonance (EPR). Mn2+ was used as a paramagnetic analog for Ca2+, since there is evidence that Mn2+ is accumulated by the Ca2+ transport mechanism. After 1.5 h of uptake the EPR spectrum of the Mn2+ in the membrane indicated that 89% of the Mn2+ was in a spin-exchange form, indicating close packing of Mn2+. The Mn2+ spacing was estimated from the line width to be about 4.7 A. The remaining Mn2+ was very likely Mn2+ hexahydrate. At pH 7.4 the spin-exchange spectrum tended to broaden when uptake was inhibited, while at pH 5.0 the spin-exchange spectrum was completely abolished in the presence of inhibitors. The EPR spectrum of Mn2+ in the chorioallantoic membrane had a broader line width than that of Mn2+ in isolated mitochondria, suggesting that in this tissue mitochondria are not directly involved in divalent cation transport. These EPR studies support the concept that divalent cations are sequestered in high concentrations from the rest of the cell contents during transcellular active transport.  相似文献   

3.
A mitochondria-free membrane fraction prepared from rat myometrium accumulated 45Ca2+ in the presence of oxalic acid and ATP. The rate of transport of Ca2+ into the membranous vesicles was increased by greater than 50% in the presence of 3',5'-cyclic AMP, but not by 2',3'-cyclic AMP or 5'AMP. Membrane ATPase activity was stimulated by Mg2+; slight additional stimulation was obtained in the presence of Na+ and K+ but not in the presence of Ca+2. Despite the cyclic AMP sensitivity of membrane ATPase activity, the absence of any effect of inhibitors of Ca2+-transport suggest it has little to do with Ca2+ accumulation by the membranes. Cyclic AMP-induced increase in Ca2+-transport and membrane ATPase activity was duplicated in vivo by incubating uteri in 10(-4)M isoproterenol prior to membrane isolation. Isoproterenol has been previously shown to increase myometrial cyclic AMP levels, and changes in Ca2+-transport by cell membranes in relation to intracellular cyclic AMP levels may be the mechanism through which hormones modulate uterine contractility.  相似文献   

4.
Membrane vesicles were purified from resting corpus mucosa of pig stomachs by velocity-sedimentation on a sucrose-Ficoll step gradient. Two vesicular fractions containing the (H+ + K+)-ATPase were obtained. One fraction was tight towards KCl, the other was leaky. At 21 degrees C maximal (H+ + K+)-ATPase activities of 0.8 and 0.4 mumol X mg-1 X min-1, respectively, were observed in lyophilized vesicles. The vesicles contained a membrane-associated carbonic anhydrase, the activity of which was in 100-fold excess of the maximal ATPase activity. Both vesicular fractions were rich in phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol. The characteristics of ion permeability and transport in the tight vesicles were in agreement with corresponding data for vesicles of a tubulovesicular origin in the parietal cell. Measurement of the rate of K+ uptake into the vesicles was based on the ability of K+ to promote H+ transport. The uptake was slow and dependent on the type of anion present. The effectiveness in promoting uptake of K+ by anions was SCN- greater than NO3- greater than Cl- much greater than HCO3- greater than SO4(2-). Uptake of K+ was much more rapid at alkaline pH than at neutral or at acidic pH. Addition of CO2 at alkaline pH strongly stimulated the rate of H+ accumulation in the vesicles. The initial part of this stimulation was sensitive to acetazolamide, an inhibitor of carbonic anhydrase. A model how the (H+ + K+)-ATPase and the carbonic anhydrase may co-operate is presented. It is concluded that membrane vesicles of a tubulovesicular origin can produce acid.  相似文献   

5.
Phosphorylation of phospholamban and development of reticular Ca2+ transport were studied in crude membrane preparations of embryonic, newborn and adult chick heart. Maximal phosphorylation of phospholamban by added catalytic subunit of cyclic AMP-dependent protein kinase increases from embryonic day 4-15. It decreases with further development. In the same membrane preparations active Ca2+-uptake into vesicles of sarcoplasmic reticulum rises from day 4-7 and decreases then slightly until day 20. A several-fold increase in Ca2+-transport activity occurs at the time of hatching. The data indicate separate genetic control for synthesis of phospholamban and sarcoplasmic reticulum Ca2+-ATPase.  相似文献   

6.
The chick chorioallantoic membrane is an epithelial tissue which actively transports large amounts of Ca2+ during embryonic development. In this paper Mn2+ uptake by the tissue was studied and compared to Ca2+ uptake in parallel experiments. The purpose of these experiments was to determine if Mn2+ could be used to gain more information about the Ca2+ transport system. It was found that Mn2+ uptake was reduced significantly under conditions that reduced Ca2+ uptake and that Mn2+, like Ca2+, was taken up preferentially by the ectodermal side of the tissue. Mn2+ uptake showed saturation kinetics with a Km of 0.33 MM. Mn2+ uptake was also competitively inhibited by Ca2+, and Ca2+ uptake inhibited by Mn2+. Electron microprobe studies showed that Mn2+ was localized in the ectoderm of the tissue in the same way as Ca2+. It was concluded from these studies that significant amounts of Mn2+ were accumulated by the active Ca2+ transport mechanism and that Mn2+ could be useful paramagnetic probe of divalent cation transport in this tissue.  相似文献   

7.
Carbonic anhydrase inhibition and calcium transients in soleus fibers   总被引:2,自引:0,他引:2  
P Wetzel  T Liebner  G Gros 《FEBS letters》1990,267(1):66-70
We simultaneously measured cytoplasmic Ca2+ transients using Fura-2 and isometric force in rat soleus fiber bundles. In the presence of the carbonic anhydrase inhibitor, chlorzolamide, we observed a decreased amplitude and retarded decay of the Ca2+ signal. This corresponded with a decreased isometric force and a retarded muscle relaxation. We conclude that muscle carbonic anhydrase participates in excitation-contraction coupling, possibly by rapidly providing protons that are exchanged for Ca2+ across the sarcoplasmic reticulum membrane.  相似文献   

8.
The isatin scaffold is the constitutive fragment of several natural and synthetic bioactive molecules. Albeit several benzene sulphonamide-based carbonic anhydrase inhibitors (CAIs) have been reported, only recently isatin benzene sulphonamides have been studied and proposed as CAIs. In this study we have designed, synthesised, and evaluated the biological activity of a series of differently substituted isatin-based benzene sulphonamides which have been designed for the inhibition of carbonic anhydrase isoforms. The activity of all the synthesised compounds was evaluated towards human carbonic anhydrase I, II, IX, and XII isozymes. Our results indicate that the nature and position of substituents on the isatin ring can modulate both activity and isozyme selectivity.  相似文献   

9.
Subcellular fractionation studies were performed to delineate plasma membrane and intracellular membrane populations which might be involved in intracellular Ca2+-homeostasis of rat small intestinal epithelial cells. After a low-speed supernatant fraction had been suspended in 5% sorbitol and subjected to equilibrium centrifugation in a zonal rotor, the Golgi and endoplasmic reticulum markers, galactosyltransferase and NADPH-cytochrome -c reductase, were concentrated in a density region designated Window II. The basal-lateral membrane marker (Na+-K+)-ATPase was concentrated in a higher-density region designated Window III. ATP-dependent Ca2+ transport was equally distributed between the two windows. Several membrane populations could be resolved from each window with good recovery of Ca2+-transport activity by a second density gradient centrifugation step. Second density gradient fractions were subjected to counter-current partitioning in an aqueous polymer two-phase system. Basal-lateral membranes, characterized by an 11-fold enrichment of (Na+-K+)-ATPase, contained ATP-dependent Ca2+-transport activity with Vmax = 3.7 nmol/mg per min and Km = 0.5 microM. A major Golgi-derived population exhibited Ca2+-transport activity with Vmax and Km values similar to those of the basal-lateral membranes. One membrane population, presumed to have been derived from the endoplasmic reticulum, contained Ca2+-transport activity with Vmax = 4 nmol/mg per min and Km = 0.5 microM. In addition to demonstrating that ATP-dependent Ca2+-transport activity has a complex distribution within enterocytes, this study raises the possibility that the basolateral plasma membranes might account for a relatively minor portion of the cell's Ca2+-pumping ability.  相似文献   

10.
Plasma membrane (Ca2+-Mg2+)ATPase purified from bovine aortic microsomes by calmodulin affinity chromatography was incorporated into soybean phospholipid liposomes. In the reconstituted proteoliposomes, a protein corresponding to the ATPase was phosphorylated by [gamma-32P]ATP in the presence of cGMP and cGMP-dependent protein kinase. Both the affinity for Ca2+ and the maximum Ca2+ uptake activity by the proteoliposomes were increased by the cGMP-dependent phosphorylation, and there was good parallelism between the Ca2+-uptake rate and the extent of phosphorylation. These results strongly suggest that the Ca2+-transport ATPase of the vascular smooth muscle plasma membrane is regulated through its cGMP-dependent phosphorylation.  相似文献   

11.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

12.
The characteristics of the anion-sensitive Mg2+-ATPase activity of the rabbit erythrocyte have been studied in a lyophilized ghost preparation. The enzyme appears to be different from the anion-sensitive Mg2+-ATPase activity of other tissues in many parameters, such as optimal pH, effects of various anions, oligomycin sensitivity and effects of Triton X-100. The enzyme is insensitive towards inhibition by irreversibly bound 4,4'-diisothiocyano-dihydrostilbene-2,2'-disulfonic acid (H2DIDS). This excludes a relationship between the enzyme and the "band 3" protein, which is thought to be involved in the anion exchange over the erythrocyte membrane. From the effects of ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), CaCl2, chlorpromazine and ruthenium red it is concluded that the enzyme activity does not represent a separate entity but is part of the (Ca2+ + Mg2+)-ATPase system of the erythrocyte membrane. A reported stimulatory effect of carbonic anhydrase is attributed to a contamination of the carbonic anhydrase preparation by calcium and/or (Ca2+ + Mg2+)-ATPase activator protein.  相似文献   

13.
M Kubota  E Abe  T Shinki    T Suda 《The Biochemical journal》1981,194(1):103-109
The relationship between bone formation and vitamin D metabolism was investigated in the developing chick embryo. Fertilized White Leghorn eggs were incubated at 38 degrees C in an incubator for 21 days. The fresh weight and calcium content of embryonic tibiae began to increase at day 12 and attained maximal values at day 19. Bone alkaline phosphatase and citrate decarboxylation activities, both of which represent osteoblastic activity, also began to increase at days 10-12, reached maximal values at day 19 and sharply declined thereafter. Both bone enzyme activities were highly correlated with CA2+-binding activity in the chorioallantoic membrane measured by the Chelex 100 assay. When mesonephric and metanephric homogenates were incubated with 25-hydroxy[3H]cholecalciferol, a marked and concomitant increase occurred in the metanephric 1 alpha- and 24-hydroxylase activity after day 14. The production of 1 alpha, 25-dihydroxycholecalciferol attained a maximal value at day 19 and decreased thereafter, whereas that of 24,25-dihydroxycholecalciferol continued to increase until hatching. The production rate of 1 alpha, 25-dihydroxycholecalciferol by the metanephros coincided with the changes in Ca2+-binding activity in the chorioallantoic membrane and osteoblastic activity. Since both intestinal calcium absorption and bone mineral mobilization do not occur in embryonic life, these results support the idea that 1 alpha, 25-dihydroxycholecalciferol may be involved directly in bone formation or induction of a calcium-binding protein in the chorioallantoic membrane.  相似文献   

14.
Separated plasma and whole blood non-bicarbonate buffering capacities, together with plasma and gill carbonic anhydrase activities and endogenous plasma carbonic anhydrase inhibitor activity were investigated in three species of fish: the brown bullhead (Ameirus nebulosus), a teleost; the longnose skate (Raja rhina), an elasmobranch; and the spotted ratfish (Hydrolagus colliei), a chimaeran. The objective was to test the hypothesis that species possessing gill membrane-bound carbonic anhydrase and/or plasma carbonic anhydrase activity would also exhibit high plasma nonbicarbonate buffering capacity relative to whole blood non-bicarbonate buffering capacity and would lack an endogenous plasma carbonic anhydrase inhibitor. Separated plasma non-bicarbonate buffering capacity constituted > or = 40% of whole-blood buffering in all three species. In addition, all species lacked an endogenous plasma carbonic anhydrase inhibitor. Separated plasma from skate and ratfish contained carbonic anhydrase activity, whereas bullhead plasma did not. Examination of the subcellular distribution and characteristics of branchial carbonic anhydrase activity revealed that the majority of branchial carbonic anhydrase activity originated from the cytoplasmic fraction in all species, with only 3-5% being associated with a microsomal fraction. The microsomal carbonic anhydrase activity of bullhead and ratfish was significantly reduced by washing, indicating the presence of carbonic anhydrase activity that was not integrally associated with the membrane pellet, microsomal carbonic anhydrase activity in skate was unaffected by washing. In addition, microsomal carbonic anhydrase activity from skate and ratfish but not bullhead gills was released to a significant extent from its membrane association by treatment with phosphatidylinositol-specific phospholipase C. The results obtained for skate are consistent with published data for dogfish, suggesting that the possession of branchial membrane-bound carbonic anhydrase activity may be a generalised elasmobranch characteristic. Ratfish, which also belong to the class Chondrichthyes, exhibited a similar pattern. Unlike skate and ratfish, bullhead exhibited high plasma non-bicarbonate buffering capacity and lacked an endogenous carbonic anhydrase inhibitor in the absence of plasma and gill membrane-bound carbonic anhydrase activities.  相似文献   

15.
Antibodies against purified Ca2+-transport ATPase from human erythrocytes were raised in rabbits. Immunodiffusion experiments revealed that precipitating antibodies had been developed. The immunoglobulin fraction inhibited solely the calmodulin-dependent fraction of erythrocyte Ca2+-transport ATPase activity, whereas the basal (in the absence of added calmodulin) activity of the enzyme was not significantly affected by the antibodies. The antibodies produced similar doseresponse curves for the calmodulin- and the oleic acid-stimulated enzyme. However, the immunoglobulin fraction was considerably less effective in inhibiting Ca2+-transport ATPase activated by limited proteolysis. The results obtained with our antibodies are compatible with the interpretation that at least one subpopulation of the antibodies attacks the enzyme at or close to the calmodulin-binding site of the ATPase. The antibodies also inhibited the calmodulin-regulated Ca2+-transport ATPase from pig smooth-muscle plasma membrane, though with lower potency. However, the immunoglobulin fraction failed to suppress pig cardiac sarcoplasmicreticulum Ca2+-transport ATPase activity in the concentration range investigated. In addition, the activity of phosphodiesterase from rat brain, another enzyme modulated by calmodulin, was not at all affected by the immunoglobulin fraction.  相似文献   

16.
Isolated mitochondria from liver or brown adipose tissue of obese ob/ob mice demonstrated increased rates of Ca2+ uptake and release compared with those of lean mice. This enhanced transport activity was not found in mitochondria from kidney or skeletal muscle. Respiration-induced membrane potential was the same in mitochondria from lean and ob/ob mice. It is therefore concluded that the increased Ca2+ uptake rates reflect an activation of the Ca2+ uniporter rather than a change in the electrophoretic driving force. As mitochondria from pre-obese ob/ob mice did not show elevated rates of Ca2+ transport, the activated transport in the obese animals was thus a consequence of the state of obesity rather than being a direct effect of the ob/ob genotype. It is suggested that the enhanced activity of the Ca2+-transport pathways in liver and brown adipose tissue may alter metabolic functions in these tissues by modifying cytoplasmic or intramitochondrial Ca2+ concentrations.  相似文献   

17.
Sarcolemmal carbonic anhydrase in red and white rabbit skeletal muscle   总被引:2,自引:0,他引:2  
Sarcolemmal vesicles of white and red skeletal muscles of the rabbit were prepared by consecutive density gradient centrifugations in sucrose and dextran according to Seiler and Fleischer (1982, J. Biol. Chem. 257, 13,862-13,871). White and red muscle membrane fractions enriched in sarcolemma were characterized by high ouabain-sensitive Na+, K(+)-ATPase, by high Mg2(+)-ATPase activity, and by a high cholesterol content. Ca2(+)-ATPase activity, a marker enzyme for sarcoplasmic reticulum, was not detectable in the highly purified white and red muscle sarcolemmal fractions. White and red muscle sarcolemmal fractions exhibited no significant differences with regard to Na+, K(+)-ATPase, Mg2(+)-ATPase, and cholesterol. Specific activity of carbonic anhydrase in white muscle sarcolemmal fractions was 38 U.ml/mg and was 17.6 U.ml/mg in red muscle sarcolemma. Inhibition properties of sarcolemmal carbonic anhydrase were analyzed for acetazolamide, chlorzolamide, and cyanate. White muscle sarcolemmal carbonic anhydrase is characterized by inhibition constants, KI, toward acetazolamide of 4.6 X 10(-8) M, toward chlorzolamide of 0.75 X 10(-8) M, and toward cyanate of 1.3 X 10(-4) M. Red muscle sarcolemmal carbonic anhydrase is characterized by KI values toward acetazolamide of 8.1 X 10(-8) M, toward chlorzolamide of 6.3 X 10(-8) M, and toward cyanate of 0.81 X 10(-4) M. In contrast to the high specific carbonic anhydrase activities in sarcolemma, carbonic anhydrase activity in sarcoplasmic reticulum from white muscle varied between values of only 0.7 and 3.3 U.ml/mg. Carbonic anhydrase of red muscle sarcoplasmic reticulum ranged from 2.4 to 3.7 U.ml/mg.  相似文献   

18.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

19.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

20.
A Ca2+-activated ATPase activity is present in the chick embryonic chorioallantoic membrane (CAM), the placenta-like tissue which translocates eggshell calcium into the embryonic circulation. The enzyme is membrane-bound, ATP-specific, Mg2+-dependent, exhibits dual Km values of 30 microM and 0.3 mM Ca2+, and has a Mr of 170,000. Throughout embryonic development, a single electrophoretic form of the Ca2+-ATPase is found and, furthermore, its specific activity as a function of age follows a bimodal pattern. In particular, from incubation days 14-15 to the end of gestation, a period representing rapid embryonic calcium accumulation, Ca2+-ATPase specific activity increases 6-fold. Cytohistochemistry localized the Ca2+-ATPase exclusively within the CAM ectoderm which lies adjacent to the calcium-rich shell membrane/eggshell. In a parallel study, cleavable bifunctional cross-linking agents were used to characterize the in situ protein topography of the CAM ectodermal surface adjacent to the calcium-binding protein (CaBP), a CAM cell-surface protein associated with calcium transport. We found that the immediate near neighbor of the CaBP is a 170,000 Mr, membrane-bound protein. The 170,000 protein was co-isolated with the CaBP after cross-linkage in situ and subsequent immunoprecipitation with anti-CaBP antibodies. Reductive cleavage of the immune complex released detectable Ca2+-ATPase activity, suggesting that the 170,000 protein is the Ca2+-ATPase of the CAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号