首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1–15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.  相似文献   

2.
A steady-state level of about 240 nmol/mg (dry wt) occurs during lysine transport in Saccharomyces cerevisiae. No subsequent efflux of the accumulated amino acid was detected. Two transport systems mediate lysine transport, a high-affinity, lysine-specific system and an arginine-lysine system for which lysine exhibits a lower affinity. Preloading with lysine, arginine, glutamic acid, or aspartic acid inhibited lysine transport activity; preloading with glutamine, glycine, methionine, phenylalanine, or valine had little effect; however, preloading with histidine stimulated lysine transport activity. These preloading effects correlated with fluctuations in the intracellular lysine and/or arginine pool: lysine transport activity was inhibited when increases in the lysine and/or arginine pool occurred and was stimulated when decreases in the lysine and/or arginine pool occurred. After addition of lysine to a growing culture, lysine transport activity was inhibited more than threefold in one-third of the doubling time of the culture. These results indicate that the lysine-specific and arginine-lysine transport systems are regulated by feedback inhibition that may be mediated by intracellular lysine and arginine.  相似文献   

3.
The transport of amino acids across the blood-brain barrier was measured with the single-pass carotid injection method. The pH of the injected bolus varied between 4.5 and 8.5. Arginine and lysine uptakes were inhibited 24% at pH 5.5 and 59% at pH 4.5. The uptakes of 2-aminobicyclo (2,2,1) heptane-2-carboxylic acid and phenylalanine were unaffected at this pH. There were also no changes observed in choline, glucose, or butanol transport. The Ki of arginine transport inhibition by H+ was 2.4 +/- 0.5 microM; i.e., pH 5.6 +/- 0.1. No change with pH occurred in the Km of arginine transport, while a significant decrease (p less than 0.01) was observed in the Vmax (10.2 +/- 2.3 nmol min-1 g-1 and 5.6 +/- 2.3 nmol min-1 g-1 at pH 7.5 and pH 5.5, respectively). This noncompetitive inhibition was found to be transient as arginine uptake at pH 7.5; it was measured by carotid injection 30 sec following a previous bolus which was buffered to pH 4.5, and was not significantly different from the control. This selective inhibition of the blood-brain barrier basic amino acid carrier demonstrates the advantage of the carotid injection approach in exposing the capillary exchange site to extreme alterations in chemical composition which could not be tolerated systemically.  相似文献   

4.
A commercial hydrolysate of casein stimulated production of lysine decarboxylase (EC 4.1.1.18) by Escherichia coli B. Cellulose and gel chromatography of this hydrolysate yielded peptides which were variably effective in this stimulation. Replacement of individual, stimulatory peptides by equivalent amino acids duplicated the enzyme levels attained with those peptides. There was no indication of specific stimulation by any peptide. The peptides were probably taken up by the oligopeptide transport system of E. coli and hydrolyzed intracellularly by peptidases to their constituent amino acids for use in enzyme synthesis. Single omission of amino acids from mixtures was used to screen them for their relative lysine decarboxylase stimulating abilities. Over 100 different mixtures were evaluated in establishing the total amino acid requirements for maximal synthesis of lysine decarboxylase by E. coli B. A mixture containing all of the common amino acids except glutamic acid, aspartic acid, and alanine increased lysine decarboxylase threefold over an equivalent weight of casein hydrolysate. The nine most stimulatory amino acids were methionine, arginine, cystine, leucine, isoleucine, glutamine, threonine, tyrosine, and asparagine. Methionine and arginine quantitatively were the most important. A mixture of these nine was 87% as effective as the complete mixture. Several amino acids were inhibitory at moderate concentrations, and alanine (2.53 mM) was the most effective. Added pyridoxine increased lysine decarboxylase activity 30%, whereas other B vitamins and cyclic adenosine 5′-monophosphate had no effect.  相似文献   

5.
SYNOPSIS. Three-day-old cultures of Y and MR strains of Trypanosoma cruzi had a higher rate of lysine and arginine uptake than 10-day cultures. Amino acid uptake by cells of the MR strain was consistently higher than that of the Y strain. Flagellates separated on DEAE-cellulose columns have normal structure, motility, and infectivity; they have higher rates of lysine and arginine uptake than the original 3- and 10-day cultures. In addition, passage through DEAE-cellulose columns modified the kinetic behavior of amino acid transport systems in the flagellate membranes. Methionine inhibited uncompetitively uptake of lysine and arginine by MR and Y strains. Lysine inhibited arginine uptake by both strains by an uncompetitive mechanism. Lysine, however, inhibited the uptake of arginine by 10-day culture cells of the Y strain by a mixed-type of inhibition. Arginine also inhibited the lysine uptake of both strains by an uncompetitive mechanism. In all experiments, beyond a certain level, a further increase in inhibitor concentration resulted in a decreased inhibition, which eventually disappeared altogether. Inhibition of amino-acid uptake by any of the substances tested was not observed after passage of flagellates through a DEAE-cellulose column. A model for amino acid transport was formulated which includes a recognition site amenable to modulation by effectors.  相似文献   

6.
V Y Hook 《Life sciences》1990,47(13):1135-1139
Carboxypeptidase H (CPH) is one of the later enzymes in the cascade of proteolytic steps required for the posttranslational processing of peptide hormone precursors, including processing of proenkephalin. In this study, CPH activity in the soluble and membrane fractions of enkephalin-containing bovine chromaffin granules was competitively inhibited by its products arginine and lysine. Ki values for arginine and lysine were 4.6 +/- 1.3 and 7.6 +/- 1.9 mM, respectively, indicating that arginine was a more effective inhibitor than lysine. Other amino acids (at 10 mM) had no effect. The in vivo intragranular concentrations of lysine and arginine are similar to the measured Ki values, indicating that product inhibition of CPH by basic amino acids may occur in vivo.  相似文献   

7.
The effect of fifteen amino acids, supplied singly, on the growthof isolated germinating barley embryos in the presence of nitratehas been studied. The L forms of lysine, arginine, tyrosine,proline, threonine, methionine, leucine, and valine at concentrationsof either 1 or 2 mM have been found to inhibit fresh-weightaccumulation. The inhibition by valine is relieved by furtheraddition of isoleucine and that of leucine by the addition ofboth isoleucine and valine. These interrelations have been interpretedas suggesting that leucine and valine can inhibit acetolactateand acetohydrorybutyrate synthesis. The inhibition of tyrosinecan be relieved by phenylalanine and that of lysine by ornithineor arginine. The possible reasons for these interrelationshipsare discussed.  相似文献   

8.
The transport of arginine-14C by exponentially growing cellsof Saccharomyces cerevisiae (ATCC 9763) was studied in the presenceof various amino acids, ammonium and urea. Arginine transportwas inhibited when the cells were preincubated with these compoundsfor 1 hr. Little or no inhibition of transport occurred whenthe preincubation period was omitted. Kinetics studies revealedthat arginine was transported by two distinct systems havinghigh and low affinities for this amino acid. At given arginineconcentrations the high affinity system was capable of transportingarginine molecules at approximately seventy times the rate ofthe low affinity system. The general requirements for arginine transport revealed energyand temperature dependencies in addition to sensitivity to anumber of metabolic inhibitors. Transfer of cells to N-freemedium was accompanied by increased rates of transport. Thisincrease was shown for the uptake of ten different amino acids.For L-arginine, this increase was prevented by addition of cycloheximide. Analyses of amino acid pools, after various experimental treatments,failed to reveal any consistent correlation between transportrates and the concentrations of individual amino acids or ammonium. It is concluded that arginine transport of S. cerevisiae isregulated by inhibition and repression. In this respect theavailability of ammonium would appear to be of prime importancein the development of transport activity. (Received December 5, 1975; )  相似文献   

9.
Increased amino acid requirement of malignant cells is exploited in metabolic antitumor therapy, e.g., enzymotherapies based on arginine or methionine deprivation. However, studies on animal models and clinical trials revealed that solid tumors are much less susceptible to single amino acid starvation than could be expected from the in vitro data. We conducted a comparative analysis of the response of several tumor cell lines to single amino acid starvation in 2-D monolayer versus 3-D spheroid culture. We revealed for the first time that in comparison with monolayer culture tumor cells, spheroids are much less susceptible to the deprivation of individual amino acids (i.e., arginine, leucine, lysine or methionine). Accordingly, even after prolonged (up to 10 days) starvation, spheroid cells could readily resume proliferation when appropriate amino acid was resupplemented. In the case of arginine deprivation, similar apoptosis induction was detected both in 2-D and 3-D culture, suggesting that this process does not determine the level of tumor cell sensitivity to this kind of treatment. It was also observed that spheroids much better mimic the in vivo ability of tumor cells to utilize citrulline as arginine precursor for growth in amino acid deficient environment. We conclude that 3-D spheroid culture better reflects in vivo tumor cell response to single amino acid starvation than 2-D monolayer culture and should be used as an integral model in the studies of this type of antitumor metabolic targeting.  相似文献   

10.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

11.
Amino acid catabolism, the tricarboxylic acid cycle intermediates and ammonia formation were studied in isolated perfused rat heart under anoxia. The total net anaplerosis due to amino acid degradation in anoxia was equal to that in oxygenation (6.29 and 6.09 mumol/g dry weight per h, respectively) as a result of the increased transamination of glutamic and aspartic acids. During anoxic perfusion, the rate of catabolism of glutamic and aspartic acids was 1.5-times higher than in normoxia, while depletion of branched-chain amino acids, lysine, proline, arginine and methionine, was inhibited. Alanine was the product of excessive degradation of glutamic and aspartic acids. Under anaerobic conditions, in spite of inhibition of amino acid deamination, ammonia formation was increased 2.7-fold as compared to oxygenation. The principal amount of ammonia (96%) was produced at degradation of adenine nucleotides. A 2.5-fold increase in the pool of the tricarboxylic acid cycle intermediates under anoxia was associated mainly with accumulation of succinate. The data suggest that the coupling of alanine- and aspartate amino transferases is a mechanism controlling the tricarboxylic acid cycle pool size in anoxic heart.  相似文献   

12.
The majority (10 of 17) of amino acids tested entered the mature duck erythrocyte by a saturable, non-uphill transport system, whereas for the erythrocyte-free malarial parasite, Plasmodium lophurae, the converse was true: most amino acids entered the parasite by simple diffusion. Only five amino acids (glutamic and aspartic acids, cysteine, lysine, arginine) showed mediated entry into P. lophurae. The pattern of mediated amino acid transport into the duck erythrocyte was altered upon infection, e.g., either entry was by diffusion or there was a reduced affinity for the amino acid. Transport characteristics similar to those found in the malaria-infected erythrocyte were produced by treating normal duck red cells with a cell-free extract of malaria-infected erythrocytes and quinine (a depressor of red cell ATP). It is suggested that depletion of host cell ATP as well as elaboration of as yet unidentified substances by the parasite promote the changes in permeability seen in the malaria-infected cell.  相似文献   

13.
家蚕体内因缺乏维生素B6而引起的若干代谢变动   总被引:2,自引:2,他引:2  
张剑韵  黄龙全 《昆虫学报》2003,46(4):436-440
采用不含桑叶粉末、以去维生素牛乳酪蛋白为蛋白源的准合成饲料饲育家蚕Bombyx mori 5龄幼虫,探讨了缺乏维生素B6(VB6)对蚕体氨基酸代谢、脂肪酸代谢以及转氨酶活力的影响。缺乏VB6引起支链氨基酸分解代谢受阻,幼虫体液中大量积累亮氨酸、缬氨酸和异亮氨酸。同时因绢丝腺发育停滞,丝氨酸也在体液中积累。另一方面,缺乏VB6幼虫体液中赖氨酸、脯氨酸、精氨酸、甲硫氨酸和谷氨酸含量减少,其中赖氨酸尤为突出。推测缺乏VB6引起赖氨酸分解代谢亢进。结果还表明,缺乏VB6幼虫体内脂肪酸代谢异常,谷丙转氨酶活力显著低下。  相似文献   

14.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

15.
Biochemical mutants of Actinomyces griseus producing grisin were obtained under the action of chemical mutagens. The mutants were divided into 2 groups. The mutants with impaired synthesis of amino acids of the aspartic acid family, i.e. lysine, homoserine and methionine were included into the 1st group. The 2nd group included the mutants with impaired synthesis of the other amino acids, i.e. histidine, arginine, tyrosine, phenylalanine and valine. The antibiotic production level in the biochemical mutants was studied. It was found that the level of the antibiotic production was decreased in most of the biochemical mutants. A necessity for increased fonds of lysine and arginine for biosynthesis of grisin was shown.  相似文献   

16.
The absorption of lysine, arginine, phenylalanine and methionine by Taenia crassiceps larvae is linear with respect to time for at least 2 min. Arginine uptake occurs by a mediated system and diffusion, and arginine, lysine and ornithine (in order of decreasing affinity) are completely competitive inhibitors of arginine uptake. The basic amino acid transport system has a higher affinity for l-amino acids than d-amino acids, and blocking the α-amino group of an amino acid destroys its inhibitory action. Phenylalanine uptake by T. crassiceps larvae is inhibited in a completely competitive fashion by serine, leucine, alanine, methionine, histidine, phenylalanine, tyrosine and tryptophan (in order of increasing affinity). Methionine apparently binds non-productively to the phenylalanine (aromatic amino acid-preferring) transport system. l-methionine uptake by larvae is inhibited more by d-alanine and d-valine than by their respective l-isomers, while d- and l-methionine inhibit l-methionine uptake equally well. The presence of an unsubstituted α-amino group is essential for an inhibitor to have a high affinity for the methionine transport system. Uptake of arginine, phenylalanine and methionine is Na+-insensitive, and both phenylalanine and methionine are accumulated by larvae against a concentration difference in the presence or absence of Na+. Arginine accumulation is precluded by its rapid metabolism to proline, ornithine and an unidentified compound.  相似文献   

17.
The inhibition of protein synthesis by ethionine reported previously was found to be apparent, and ethionine inhibited only amino acid uptake like other usual amino acids. Even under such strong inhibition of the uptake, the syntheses of protein and DNA remained almost undiminished. The uptake of amino acid mixture by sea urchin embryos in the early cleavage stage was found to be carried out by active transport, since it was temperature-sensitive and was inhibited by 2,4-dinitrophenol. The uptake of an amino acid mixture or of single amino acids, e.g., valine, leucine and phenylalanine, was inhibited nonspecifically by an excess amount of other single amino acids added exogenously. Reflecting the inhibition of amino acid uptake, in vivo incorporation of amino acids into the protein fraction was apparently inhibited by excess amounts of other amino acids. As far as tested, the inhibition seems to be nonspecific and competitive for all amino acid species. The uptakes of leucine and phenylalanine were inhibited mutually by competition, with almost the same Km and Ki.  相似文献   

18.
Proteolysis by trypsin of gizzard myosin light chain kinase (MLC kinase) in the absence of Ca2+-calmodulin produced a 64,000-dalton inactive fragment which was converted to a 61,000-dalton Ca2+-calmodulin-independent active fragment. This confirmed previous results (Ikebe, M., Stepinska, M., Kemp, B. E., Means, A. R., and Hartshorne, D. J. (1987) J. Biol. Chem. 262, 13828-13834). On the other hand, proteolysis of MLC kinase in the presence of Ca2+-calmodulin initially produced a 66,000-dalton Ca2+-calmodulin-dependent active fragment which was converted to a 61,000-dalton Ca2+-calmodulin-independent active fragment with further proteolysis. The amino acid sequences from the N terminus of the 66,000-dalton, 64,000-dalton, and 61,000-dalton fragments were determined. The sequence was not found in the reported partial amino acid sequence of MLC kinase (C-terminal 60% of whole sequence) (Guerriero, V., Jr., Russo, M. A., Olson, N. J., Putkey, J. A., and Means, A. R. (1986) Biochemistry 25, 8372-8381), and, therefore, the cleavage sites are in the remaining 40% N-terminal portion of the sequence of MLC kinase. The C terminus of these MLC kinase fragments was determined by employing the carboxypeptidases A, B, and Y digestion followed by the amino acid analysis of the released amino acids. As a result, it was concluded that the C terminus of the 66,000-dalton, 64,000-dalton, and 61,000-dalton MLC kinase fragments are arginine 522, lysine 490 and arginine 494, and lysine 473, respectively. These results show that the inhibitory domain is in the amino acid sequence of 474-490, and that the amino acid sequence 494-522 confers the calmodulin-dependent kinase activity.  相似文献   

19.
The uptake of the basic amino acids arginine, ornithine, and lysine was studied in membrane vesicles derived from cells of Lactococcus lactis which were fused with liposomes in which beef heart mitochondrial cytochrome c oxidase was incorporated as a proton motive force (PMF)-generating system. In the presence of ascorbate N,N,N'N'-tetramethylphenylenediamine-cytochrome c as the electron donor, these fused membranes accumulated lysine but not ornithine or arginine under aerobic conditions. The mechanism of energy coupling to lysine transport was examined in membrane vesicles of L. lactis subsp. cremoris upon imposition of an artificial electrical potential (delta psi) or pH gradient or both and in fused membranes of these vesicles with cytochrome c oxidase liposomes in which the delta psi and delta pH were manipulated with ionophores. Lysine uptake was shown to be coupled to the PMF and especially to the delta psi, suggesting a proton symport mechanism. The lysine carrier appeared to be specific for L and D isomers of amino acids with a guanidine or NH2 group at the C6 position of the side chain. Uptake of lysine was blocked by p-chloromercuribenzene sulfonic acid but not by maleimides. Counterflow of lysine could not be detected in L. lactis subsp. cremoris, but in the arginine-ornithine antiporter-containing L. lactis subsp. lactis, rapid counterflow occurred. Homologous exchange of lysine and heterologous exchange of arginine and lysine were mediated by this antiporter. PMF-driven lysine transport in these membranes was noncompetitively inhibited by arginine, whereas the uptake of arginine was enhanced by lysine. These observations are compatible with a model in which circulation of lysine via the lysine carrier and the arginine-ornithine antiporter leads to accumulation of arginine.  相似文献   

20.
A peptide from human parotid secretion which inhibited hemagglutination of Bacteroides gingivalis 381 was purified by ultrafiltration followed by DEAE-Sephadex A-25 column chromatography and by gel filtration on Sephadex G-25, and then by reversed-phase HPLC. The complete amino acid sequence of the peptide, determined by automated Edman degradation was as follows; Lys-Phe-His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr. The peptide contained 12 residues and the charged amino acids predominated with 4 histidine, 2 lysine, 1 arginine and 1 glutamic acid residues, thus being a histidine-rich peptide. The peptide was an active inhibitor of the hemagglutinating activity of B. gingivalis. Specific binding of tritium-labeled peptide to B. gingivalis cells was demonstrated. These results suggest that the histidine-rich peptide may function as a binding domain for the hemagglutinins of B. gingivalis during agglutination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号