首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The macromolecular reguirements for the initiation and maintenance of macronuclear DNA replication were studied in heat synchronized Tetrahymena pyriformis GL-C. Previous work had established that macronuclear S periods could occur in a consecutive fashion without intervening cell divisions during a multiple heat shock treatment, as well as immediately following the synchronized cell divisions. Cycloheximide treatment prior to or during the S period which follows the first synchronized cell division resulted in abolition of the initiation of DNA synthesis or an almost immediate cessation of DNA synthesis in progress. Temporary inhibition of DNA synthesis occurred when cycloheximide was added late in the S period. Treatment with actinomycin D was found to block the initiation of DNA synthesis but did not appreciably affect the continuation of the S period. It was concluded that RNA synthesis was required for the initiation but not the maintenance of DNA replication, whereas protein synthesis was necessary for both processes. The dependency of the initiation of an S period on prior RNA and protein synthesis was also shown to exist when a second consecutive S period was initiated without a preceding cell division. Treatment with actinomycin or cycloheximide prior to a supernumerary S period during a multiple heat shock treatment completely abolished the initiation of DNA synthesis. In T. pyriformis the synthesis of RNA and protein related to the initiation of the S period is tightly coupled to each cycle of DNA replication.  相似文献   

2.
Histone phosphorylation in late interphase and mitosis   总被引:7,自引:0,他引:7  
Histone phosphorylation in late interphase has been investigated employing cells synchronized by the isoleucine-deprivation method, followed by resynchronization at the G1S boundary using hydroxyurea. Phosphorylation occurred in both f1 and f2a2 as cells synchronously entered S phase following removal of hydroxyurea. The relative rates of phosphorylation of both species of histone increased in G2-rich and metaphase-rich cultures. A small amount of histone f3 phosphorylation was also observed in M-rich cultures which was not seen in G1, S, or G2-rich cultures. It is concluded that f1 phosphorylation is not dependent on continous DNA replication. These experiments suggest consideration of the concept that f1 phosphorylation is initiated as a preparation for impending cell division.  相似文献   

3.
The temporal schedule of DNA replication in heat-synchronized Tetrahymena was studied by autoradiographic and cytofluorometric methods. It was shown that some cells, which were synchronized by selection of individual dividing cells or by temporary thymidine starvation, incorporated [3H]thymidine into macronuclei in a periodic fashion during the heat-shock treatment. It was concluded that supernumerary S periods occurred while cell division was blocked by high temperature. The proportion of cells which initiated supernumerary S periods was found to be dependent on the duration of the heat-shock treatment and on the cell cycle stage when the first heat shock was applied. Cytofluorometric measurements of Feulgen-stained macronuclei during the heat-shock treatment indicated that the DNA complement of these cells was substantially increased and probably duplicated during the course of each S period. Estimates of DNA content also suggested that the rate of DNA synthesis progressively declined during long heat-shock treatments. These results indicate that the mechanism which brings about heat-induced division synchrony is not an interruption of the process of DNA replication. Further experiments were concerned with the regulation of DNA synthesis during the first synchronized division cycle. It was shown that participation in DNA synthesis at this time increased as more cells were able to conclude the terminal S period during the preceding heat-shock treatment. It is suggested that a discrete period of time is necessary after the completion of DNA synthesis before another round of DNA synthesis can be initiated.  相似文献   

4.
Extensive cell division after synchronization ofEscherichia coli 15 TAU by arginine and uracil starvation occurs only when DNA synthesis is permitted to proceed by at least a short pulse of thymine applied between 30 and 60 min after transfer of synchronized culture to thymine-free medium with arginine and uracil. The time schedule of synchronized cell division in dependence on the schedule of intervals of DNA synthesis and inhibition of DNA synthesis was determined. The termination of replication cycles which were not completed to the very end during arginine and uracil starvation seems to be the decisive event for subsequent cell division after synchronization.  相似文献   

5.
SYNOPSIS. Relationships between the cell cycle and the beginning of conjugation were analyzed for 3 hypotrichs: Diophrys scutum, Oxytricha bifaria, and Euplotes crassus. The first 2 species enter conjugation with micronuclei in G1; the latter species with a micronucleus in G2. The 1st micronuclear division of conjugating E. crassus is mitotic. Thus meiotic DNA replication occurs when the cells of each species have already entered the mating process. Cells from asynchronous populations start conjugation with their macronuclei primarily in G1 or more rarely at the beginning of the S stage in a percentage significantly different from that expected on the basis of random mating among all cells in the population. Also, macronuclear replication, when already begun, was blocked in cells undergoing conjugation. Therefore only the G1 or the very early S stages of the cell cycle are compatible with conjugation in the 3 analyzed species.  相似文献   

6.
Multiple interactions of members of the hsp70 family with cellular components have already been described. We present, however, the first evidence that upon heat shock treatment hsp70 molecules interact with specific chromosomal subdivisions of the polytene chromosomes ofDrosophila hydei. After a heat shock treatment of 20 min the protein binds to subdivision 3-58D1 and to the heat shock inducible subdivisions 2-48B3–6 and 2-48C1–2. Hsp70 molecules were also observed in subdivision 3-58D1 during recovery at 25°C but not in subdivisions 2-48B3–6 and 2-48C1–2. Our data suggest that this interaction is stress specific. DNase and RNase experiments suggest, moreover, that the hsp70 molecules bind to RNA from ribonucleoproteins (RNPs) in subdivisions 2-48B3–6 and 2-48C1–2 and to DNA in subdivision 3-58D1. The DNA sequences in subdivision 3-58D1 seem to have the potential to adopt the Z-DNA conformation.  相似文献   

7.
Adenylate cyclase activity and 3′, 5′ cyclic adenosinemonophosphate (cAMP) have been followed through the heat-synchronized cell cycle of Tetrahymena pyriformis. While the specific activity of adenylate cyclase remained essentially constant throughout the cycle, cAMP oscillated (between 10 and 50 pmoles/mg protein) through two cycles. Minima were observed at each division (DS border) and maxima at each SG2 border. Each heat shock caused slight temporary reduction in cyclase activity. Further observations suggest to us that adenylate cyclase shows conformational changes in response to temperature-induced alterations and to changes in lipid composition of membranes.  相似文献   

8.
DNA polymerase α-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase α-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase α-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase α-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase α-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.  相似文献   

9.
A heat-labile protein required for division accumulates during the duplication cycle of Escherichia coli. Its formation appears to commence shortly after the cell divides, and it reaches a maximal amount shortly before the next division. A plausible mechanism for timing cell division depends on building up the critical amount of this protein. Completion of deoxyribonucleic acid (DNA) replication is also necessary for division to occur, but it does not uniquely initiate division. The evidence for these conclusions comes from heat-shock experiments; heating to 45 C for 15 min delays division increasingly with the age of a cell. A heat shock given near the end of a cycle delays division for about 30 min, whereas at the beginning of the cycle it hardly affects division. The net result is synchronization of cell division. The effect of heat is increased in bacteria which have incorporated p-fluoro-phenylalanine into their proteins. When the incorporation is early and the heat shock is late in the cycle, division is delayed by about 30 min, indicating that the division protein is synthesized early even though its sensitivity is not observed until later. At any time in the cell cycle, heat shock simply delays total protein and DNA synthesis ((3)H-thymidine uptake) for approximately 14 min. DNA replication and cell division are thus discoordinated, since DNA replication is not synchronized by the treatment.  相似文献   

10.
Initiation of DNA replication is tightly controlled during the cell cycle to maintain genome integrity. In order to directly study this control we have previously established a cell-free system from human cells that initiates semi-conservative DNA replication. Template nuclei are isolated from cells synchronized in late G1 phase by mimosine. We have now used DNA combing to investigate initiation and further progression of DNA replication forks in this human in vitro system at single molecule level. We obtained direct evidence for bidirectional initiation of divergently moving replication forks in vitro. We assessed quantitatively replication fork initiation patterns, fork movement rates and overall fork density. Individual replication forks progress at highly heterogeneous rates (304 ± 162 bp/min) and the two forks emanating from a single origin progress independently from each other. Fork progression rates also change at the single fork level, suggesting that replication fork stalling occurs. DNA combing provides a powerful approach to analyse dynamics of human DNA replication in vitro.  相似文献   

11.
Cell division and DNA synthesis were measured in synchronous cultures of E. coll B/r growing in glucose minimal medium at 37 °. The kinetic curves were analysed in order to find the variability of replication initiation, termination, and cell division events during the cell cycle. It is inferred that under the conditions used, cells begin to divide 17 min (D0 = minimum D-period) after each termination of chromosome replication with a constant probability per unit of time (half-life = 4·5–6 min). This randomness produces an asymmetric frequency distribution of D-periods, similar but mirror-symmetric frequency distributions of initiation and termination periods, a symmetric, non-Gaussian distribution of interdivision intervals, and complex kinetic changes in the rate of DNA synthesis as a function of cell age. The results suggest that replication and division are precisely controlled with respect to mass accumulation, and the apparent variability of cell cycle events would only result from the use of the time of cell separation as a reference point for the definition of cell age rather than initiation or termination of replication.  相似文献   

12.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   

13.
SYNOPSIS. Heat-synchronized cultures of Tetrahymena pyriformis strain GL subjected to pulses of high hydrostatic pressure (10,000 psi for 2 min) had increasing division delays during the 1st 40 min after the last heat shock (40 min after heat treatment). Pressure treatment during the subsequent 10-min interval disrupted cell synchrony. Comparable pressures applied to the cells at later stages, before the 1st synchronous division, caused negligible division delay. Continuous exposure to 10% (v/v) heavy water hardly affected division; higher concentrations delayed or blocked division. Ten-min pulses with heavy water (40%, 50%, 70%) resulted in increasing division delays depending on the stage of the cell cycle during which the heavy water was applied. Amelioration of the division-delaying effects of pressure was observed in cells treated simultaneously with pressure (3,000 psi for 30 min), and 30% D2O. The results are consistent with the hypothesis that some of the pressure and D2O effects could be attributed to changes in the sol-gel state of the cytoplasm.  相似文献   

14.
Poliovirus Replication during HeLa Cell Life Cycle   总被引:2,自引:0,他引:2  
VIRAL replication in infected animal cells is commonly investigated in asynchronized cultures. Since several synthetic processes of macromolecules occur at definite periods in the cell cycle1,2, the possibility existed that viral infection and replication might be also phase-linked. We have chosen to investigate this problem in HeLa S3 cells infected with type 1 Mahoney poliovirus3, since the system is well known4 and these cells can be easily synchronized. In addition, the replication of poliovirus RNA in asynchronized HeLa cells has been well characterized4,5.  相似文献   

15.
The biosynthesis and phosphorylation of histone fractions were measured in synchronized CHO Chinese hamster cells arrested in late G1 by hydroxyurea treatment. Hydroxyurea was found to inhibit the initiation of both DNA and histone synthesis, thus confirming the conclusion that it arrests cells in G1 slightly before the G1S boundary. However, hydroxyurea did not inhibit the phosphorylation of histone f1 or histone f2a2. The phosphorylation of histone f1, which normally is absent in early G1, begins 2 hr prior to DNA synthesis. In the presence of hydroxyurea, f1 phosphorylation occurs on schedule at this same time in G1, resulting in significant G1-phase f1 phosphorylation. This offers strong evidence that (a) f1 phosphorylation is not restricted to S phase; (b) “old” f1 which was synthesized in previous cell cycles is phosphorylated in G1 before “new” f1 which is synthesized in S phase; and (c) G1-phase f1 phosphorylation does not require new histone or new DNA synthesis.Histone f1 phosphorylation was observed to occur at accelerated rates in S phase over phosphorylation rates observed in late G1-arrest. Data support the proposal that three different levels of f1 phosphorylation occur during the cell cycle: (1) a G1-related phosphorylation of “old” f1; (2) an S-related phosphorylation of both “old” and “new” f1; and (3) a superphosphorylation of f1 associated with chromosome condensation during the G2 to M transition. It is also possible that a limited proportion of f1 may be phosphorylated in G1, perhaps at the initial DNA synthesis sites, and that an increased proportion of f1 is phosphorylated in S as DNA is synthesized. Similarities between the kinetics of histone f1 phosphorylation and the association of DNA with lipoprotein in synchronized control and hydroxyurea-treated cells suggest an involvement of f1 phosphorylation in cell-cycle-dependent chromatin structural changes.  相似文献   

16.
The effect of X-irradiation on the cell cycle progression of synchronized populations of the human cell line NHIK 3025 has been studied in terms of the radiation-induced delay of DNA replication and cell division. Results were obtained by flow cytometric measurement of histograms of cellular DNA content and parallel use of conventional methods for cell cycle analysis, such as pulse labelling with [3H]thymidine and counting of cell numbers. The two sets of methods were generally in good agreement, but the advantages of employing two independent techniques are pointed out. Irradiation was found to have a minor influence on DNA replication. As compared with unirradiated populations, half-completed DNA replication was 20-30 min delayed in populations given 580 rad in mid-G1 or 290 rad in early S. Cell cycle progression was markedly delayed in G2. The sensitivity induction of this delay was 0·6 min/rad for populations irradiated in mid-G1, and 1·4 min/rad for populations irradiated in early S.  相似文献   

17.
The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.  相似文献   

18.
Calluses were induced from immature embryos of an indica type rice and finely dispersed cell suspension cultures were initiated from the callus using modified AA medium (S1 medium). The suspension cultures were maintained alternatively (1–2 passages in each medium) in S1 medium and S2 medium, the latter containing KNO3, NH4NO3, proline and glutamine as nitrogen source. Protoplasts of high quality were isolated form suspension cells cultured in S2 medium supplemented with ABA. Embedding the protoplasts in agarose blocks containing NH4NO3-free modified KM8P(PM1) medium and immersing the blocks in NH4NO3-containing modified KM8P(PM3) medium were most effective for obtaining protoplast division and callus formation. The protoplast-derived calluses were precultured in potato extract-aand/or ABA-containing N6(D1, D2 or D3) media and many embryo-like structures were formed. These structures developed into plantlets after being transferred to N6 differentiation (D4) medium. The regenerated plantlets grew into mature plants and beard seeds normally.Abbreviations AA medium amino acids based medium - ABA abscisic acid - BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - DF division frequency - IAA indoleacetic acid - KIN kinetin - NAA naphthaleneacetic acid - PE planting efficiency  相似文献   

19.
The replication time and pattern have been investigated in hepatoma cells induced by feeding 3'Me-DAB to male rats for 5 months. With the use of tritiated thymidine as a DNA label along with autoradiography, mitotic nuclear labeling has been studied 0.5 to 72 hours after the administration of the label. The following time intervals have been estimated: replication time, 31 hours; DNA synthesis, 17 hours; G2 plus Mitosis, 2 hours; G1, 12 hours. Only about 8 per cent of the tumor cell (interphase) population is "flash" labeled, following a single dose of 50 µC of H3TDR. This group of cells has been followed through three cycles of division. The repeated rhythmic passage of tumor cells through cell division is similar to that previously reported for normal liver cells in the growing rat. However, tumor cells have longer replication and DNA synthesis times. In addition, the several time intervals studied vary more in the tumor cell population than they do in the growing normal cell population.  相似文献   

20.
Populations of Tetrahymena pyriformis were synchronized by 30 min heat shocks at 34 °C separated by 160 min intervals at the normal growth temperature. The cells initiate DNA synthesis immediately after the cellular division, and the S period of the population lasts about 80 min. It was found that DNA replication is a prerequisite for the following synchronous division. Inhibition of the DNA synthesis in early S by starvation of the cells for thymidine prevents the forthcoming division. However, inhibition in the latter half of S does not prevent the subsequent division. Thus the cells have synthesized enough DNA to permit cell division before the end of a normal S period. These results are discussed in relation to the organization of the genome replication in the highly polyploid macronucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号