首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callus cultures of the endemic South-African legume Cyclopia subternata were cultivated under varying light and temperature conditions to determine their influence on biomass growth and bioflavonoids accumulation. Experimental modifications of light included complete darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli were also subjected to elevated temperature or cold stress. Among the tested light regimes, cultivation under blue light resulted in the highest levels of hesperidin (H)—118.00 mg 100 g?1 dry weight (DW) on 28 days of experiment, as well as isoflavones: 7-O-β-glucosides of calycosin (CG), pseudobaptigenin (PG) and formononetin (FG)—28.74, 19.26 and 10.32 mg 100 g?1 DW, respectively, in 14-days old calli. UVC irradiation applied on 20 days stimulated the accumulation of H (204.14 mg 100 g?1 DW), CG (31.84 mg 100 g?1 DW) and PG (18.09 mg 100 g?1 DW) in 28 days culture by 140, 46 and 165 %, respectively, without negatively influencing callus growth. Low temperature (13 °C) increased CG content by over 1,500 % (235.29 mg 100 g?1 DW) when applied during the whole 28-days growth cycle, at the same time causing 95 % decrease in culture growth in comparison to reference calli maintained at 24 °C. On the contrary, elevated temperature (29 °C) applied during the second half of the culture period resulted in over 300 and 500 % increase in CG and PG content (61.76 and 58.89 mg 100 g?1, respectively) while maintaining relatively high biomass yield.  相似文献   

2.
A sensitive and reliable ultra-pressure liquid chromatography with tandem mass spectrometry (UPLC–MS) was developed and validated for simultaneous quantification of six main bioactive components, i.e., calycosin-7-O-β-d-glucoside, ononin, calycosin, formononetin, astragaloside IV, and astragaloside II in rat plasma after oral administration of the 95 % ethanol extraction from Radix Astragali. Plasma samples were extracted with Waters OasisTM HLB 1 cc (30 mg) Extraction Cartridges (SPE) separated on an UPLC? BEH C18 column and detected by MS with electro spray ionization interface in positive selective ion monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r 2 > 0.99. The method had the lower limit quantification of 1.30, 0.73, 1.17, 2.33, 0.63, and 0.83 ng/mL for ononin, calycosin, calycosin-7-O-β-d-glucoside, formononetin, astragaloside IV, and astragaloside II, respectively, with precision less than 10 %. The RSD of intra- and inter-day variations ranged from 1.66 to 6.46 and 3.39 to 6.58 %. This developed method was applied subsequently to pharmacokinetic studies of the six compounds in rats successfully. The proposed method was for the first time to compare the pharmacokinetic difference between calycosin-7-O-β-d-glucoside and calycosin in rat plasma, so as between ononin and formononetin, and studied to the astragaloside II pharmacokinetics in rat plasma.  相似文献   

3.
The polyphenolic complex of Maackia amurensis, as well as a complex of isoflavonoids from M. amurensis callus cultures, display strong hepatoprotective effects in experimental animal and human studies. To increase the yield of polyphenols in cultures of M. amurensis, calli were transformed with the rolC gene as well as with an empty vector that was used as a control. HPLC analysis revealed that the transgenic cultures produced the same complex of isoflavonoids. The complex consisted of 20 compounds, including isoflavones and their glucosides as well as pterocarpans and their glucosides. The cultures transformed with either the empty vector or the rolC gene construct produced on average 1.22 % dry weight (DW) and 1.39 % DW of isoflavonoids, respectively. Isoflavonoid production in the transformed callus lines carrying the empty vector and the rolC gene construct reached 106 and 146 mg/L, respectively. Moreover, the rolC gene construct promoted cell growth and overall cell productivity. The transgenic callus lines expressing the rolC gene exhibited higher levels of the following six isoflavonoids: daidzein, calycosin, formononetin, 4′-Ο-β-glucopyranosyldaidzin, maackiain and 6′-O-malonyl-3-O-β-D-glucopyranosylmaackiain. However, lower levels of genistin were observed in rolC calli than in those carrying the empty vector.  相似文献   

4.
The dried roots of Radix Astragali are widely used in traditional Chinese medicine, and flavonoids present in the root of this herb have been implicated in its bioactivity. We subjected 2-year-old Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao to a progressive drought stress over 14 days of water withholding and studied the physiological and biochemical responses and secondary metabolite accumulation. Results indicated that drought stress reduced relative water content, reduced yield, but increased electrolyte leakage, malondialdehyde, proline and soluble sugar content. Mild and moderate drought stress enhanced some antioxidative enzyme activity to protect plants from damaging, but antioxidative enzyme activity was limited by severe stress. The calycosin-7-O-β-d-glycoside and ononin content of plant roots was enhanced with degree of drought stress, whereas calycosin and formononetin levels did not differ significantly until 14 days. These results demonstrate that Radix Astragali can adapt to water stress by up-regulating antioxidant enzymes and accumulation of osmotic agents, and a certain degree of drought stress can enhance accumulation of some flavonoids, potentially facilitating higher yields of pharmacological activity of calycosin-7-O-β-d-glycoside production.  相似文献   

5.
The influence of plant growth regulators on biomass growth and the accumulation of medicinally-relevant isoflavone phytoestrogens, derivatives of genistein and daidzein (8 compounds including aglycones, glucosides and glucoside esters) in callus cultures of Genista tinctoria (Fabaceae) was examined. The experiments included 10 auxins [2,4-dichlorophenoxyacetic acid (2,4-D), p-chlorophenoxyacetic acid, indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, β-naphthoxyacetic acid, picloram, 2,3,5-triiodobenzoic acid (TIBA), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)] and 7 cytokinins [6-benzylaminopurine, forchlorfenuron, 1,3-diphenylurea, 2-isopentenyladenine, kinetin (KIN), thidiazuron, zeatin] applied at 0.5 and 5.0 mg l?1, jointly with 5.0 or 0.5 mg l?1 KIN or 2,4-D (for auxins and cytokinins, respectively—36 phytohormone combinations in total). Statistical analysis of the relationships between callus growth [expressed as growth index (Gi)] and the accumulation of isoflavones showed positive correlation in the cytokinin group (rxy values from 0.13 to 0.61) and negative correlation within auxins (rxy values from ?0.31 to ?0.39). Among the cytokinins tested, the highest isoflavone content (6,436.26 mg/100 g dry weight) and the fastest biomass growth (Gi = 892.46 %) were obtained for 0.5 mg l?1 KIN used jointly with 5.0 mg l?1 2,4-D. In the group of auxins, the combination of 0.5 mg l?1 TIBA and 5.0 mg l?1 KIN provided the fastest culture growth (Gi = 983.07 %) and the isoflavone concentration of 10,474.23 mg/100 g dry weight, which is so far the highest amount of these metabolites achieved in callus cultures of higher plants.  相似文献   

6.
Coconut water is becoming an increasingly popular beverage and sports drink in tropical countries due to its high mineral content. Probiotic fermentation of coconut water would provide consumers with a novel probiotic beverage which can provide both hydration and probiotic benefits. The aim of this study was to assess the growth, survival and fermentation performance of two probiotic bacteria in coconut water. Lactobacillus acidophilus L10 and L. casei L26 grew well in coconut water and showed similar growth patterns. The viable cell count of the two probiotic cultures reached approximately 108 CFU/ml after 2 days fermentation at 37 °C and maintained approximately107–108 CFU/ml after 26 days at 4 °C. Changes in total soluble solids (oBrix), pH, sugars, organic acids and minerals were similar between the two probiotic cultures, except for fructose, glucose, copper, phosphorus and lactic, acetic and malic acids. There were significant variations between the two cultures in their ability to produce and consume these compounds. L. acidophilus produced higher amounts of 2-heptanone, 2-nonanone, benzaldehyde, 2-heptanol, 2-nonanol, δ-octalactone and δ-dodecalactone, whereas L. casei produced higher amounts of acetic acid, diacetyl, acetoin, δ-decalactone, 3-methyl-3-buten-1-ol, linalool, 1-octanol, p-tolualdehyde and ethyl 2-hydroxypropanoate. There was no substantial change in mineral content. These results suggest the feasibility of fermenting coconut water into a probiotic beverage, especially for sports nutrition, with the dual benefits of electrolytes and probiotics.  相似文献   

7.
This study presents the results of the identification and quantification of 12 isoflavones (prunetin, irilone, pseudobaptigenin, glycitein, daidzin, genistin, daidzein, pratensein, puerarin, biochanin A, formononetin and genistein) in 23 species of Trifolium (T. arvense, T. pratense, T. ligusticum, T. striatum, T. lappaceum, T. angustifolium, T. hirtum, T. subterraneum, T. isthmocarpum, T. stellatum, T. mutabile, T. strictum, T. fragiferum, T. alexandrinum, T. tomentosum. T. nigrescens subsp. petrisavii, T. nigrescens, T. glomeratum, T. subterraneum subsp. brachycalycinum, T. cherleri, T. resupinatum, T. campestre and T. repens). Isoflavones were extracted by an MSPD method and analyzed with HPLC coupled with a diode-array detector. The evaluation of molecular phylogeny of the IFS gene and the relation with isoflavone content was also performed. Five species (T. subterraneum subsp. brachycalycinum, T. alexandrinum, T. pratense, T. subterraneum and T. lappaceum) were identified with high levels of biochanin A (431–83 mg/kg), formononetin (72–365 mg/kg) and genistein (9–509 mg/kg), which could be utilized as alternative sources for the nutraceutical industry. Genetic phylogeny for the IFS gene was found in the species studied, with 20 out of 23 species having been divided into two clades, while the remaining three were genetically distant. Based on our results, we confirm the direct correlation between IFS gene polymorphism and isoflavones content in species of Trifolium particularly noted for formononetin. Therefore, the IFS gene can be utilized for screening Trifolium genotypes for formononetin. The relation of the three isoflavones' contents and the molecular phylogeny of plants determined by the IFS sequences, as a screening marker for plants with high isoflavone contents in Trifolium species, are to the best of our knowledge described for the first time.  相似文献   

8.
Three Daphne species (Thymelaeaceae) were propagated in vitro using media enriched with natural ingredients including coconut water, pineapple pulp, arabinogalactan, chitosan, and conditioned medium containing exudates of the green alga Desmodesmus subspicatus. High vigor of proliferative shoots and enhanced rooting efficiency were obtained. The propagation rate for shoot cultures of Daphne caucasica and Daphne tangutica increased significantly when cultured in the presence of 10 ml?L?1 coconut water or 10 ml?L?1 pineapple pulp. Addition of 10 ml?L?1 pineapple pulp, 10 ml?L?1 coconut water, or 20% conditioned medium to the culture medium stimulated organogenesis in D. caucasica. The percentage of rooted shoots in this difficult-to-root species reached 80% in enriched medium. Daphne jasminea plants rooted efficiently on media without growth regulators but supplemented with 10 ml?L?1 pineapple pulp or 10 ml?L?1 coconut water. Plants of D. caucasica and D. jasminea were successfully acclimatized to greenhouse conditions. Biochemical evaluation of pineapple pulp using thin-layer chromatography revealed the absence of natural auxins. However, the low-molecular-weight fraction (<500 Da) obtained via dialysis significantly stimulated rhizogenesis in each species tested.  相似文献   

9.
The glycoside hydrolase of 7-β-xylosyltaxanes (designated as LXYL-P1-2) is encoded by Lxyl-p1-2 isolated from Lentinula edodes. This hydrolase specifically removes C-7 xylose from 7-β-xylosyltaxanes to form 7-β-hydroxyltaxanes, which can be used for the semi-synthesis of paclitaxel or its analogues. In our present study, we established a high-cell-density fermentation of the recombinant Pichia pastoris harboring the Lxyl-p1-2 gene. Moreover, we further optimized the fermentation conditions, including the initial cell density and the dissolved oxygen level in the induction phase. Under optimized conditions, the biomass of 312.3 g/l (wet cell weight, WCW) was obtained, and the biomass activity of the recombinant enzyme reached 6.55 × 104 U/g (WCW). The freeze-dried cells (32 g/l) were used to convert 7-β-xylosyltaxanes (10 g/l, 7-β-xylosyl-10-deacetyltaxol = 62.12 %) in a 5-l reaction volume, and a bioconversion rate about 80 % was achieved. The product purification was performed by ethyl acetate, silica gel chromatography, and preparative HPLC (prep-HPLC), yielding 15.13 g of 10-deacetyltaxol, 3.07 g of 10-deacetylcephalomanine, and 3.47 g of 10-deacetyltaxol C, respectively. In addition, the average recovery rate was around 70 %. Our work provided a foundation for the industrial utilization of the recombinant enzyme on the semi-synthesis of paclitaxel using 7-β-xylosyltaxanes.  相似文献   

10.
A novel β-glucosidase from Penicillium aculeatum was purified as a single 110.5-kDa band on SDS–PAGE with a specific activity of 75.4 U?mg?1 by salt precipitation and Hi-Trap Q HP and Resource Q ion exchange chromatographies. The purified enzyme was identified as a member of the glycoside hydrolase 3 family based on its amino acid sequence. The hydrolysis activity for p-nitrophenyl-β-d-glucopyranoside was optimal at pH 4.5 and 70 °C with a half-life of 55 h. The enzyme hydrolyzed exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides. Because of the novel specificity, this enzyme had the transformation pathways for ginsenosides: Rb1?→?Rd?→?F2?→?compound K, Rb2?→?compound O?→?compound Y, Rc?→?compound Mc1?→?compound Mc, Rg3?→?Rh2?→?aglycone protopanaxadiol (APPD), Rg1?→?F1, and Rf?→?Rh1?→?aglycone protopanaxatriol (APPT). Under the optimum conditions, the enzyme converted 0.5 mM Rb2, Rc, Rd, Rg3, Rg1, and Rf to 0.49 mM compound Y, 0.49 mM compound Mc, 0.47 mM compound K, 0.23 mM APPD, 0.49 mM?F1, and 0.44 mM APPT after 6 h, respectively.  相似文献   

11.
12.
13.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

14.
We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l?1 with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS–DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or ?20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1–7.3 × 106 l?1 after 3 days growth with maximum MS yields (0.7–1.1 × 107 l?1) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS–DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 109 conidia g?1). All MS granules showed similar stability after storage at either 26 or ?20 °C for 3.5 months.  相似文献   

15.
Pulse-labeling experiments of white lupin (Lupinus albus L.) cell cultures with [U-14C]l-phenylalanine for 72 h resulted in the incorporation of the radioactivity into the isoflavone aglucones, glucosides, and prenylated derivatives. Both the aglucones genistein and 2′-hydroxygenistein and their 7-O-glucosides accounted for 85% of the total isoflavonoids identified in the cultured cells and contained 35% of the radioactivity, whereas the prenylated derivatives comprised 15 and 65%, respectively. Almost 20% of the labeled isoflavones of the cellular pool was recovered from the culture medium, 90% of which were monoprenylated and diprenylated derivatives containing 80% of the radioactivity. These results clearly demonstrate the release into the culture medium of a substantial amount of the endogenously synthesized isoflavonoids, especially the prenylated derivatives.  相似文献   

16.

Objective

Glucose conversion into disaccharides was performed with β-glucosidases from Prunus dulcis (β-Pd), Aspergillus niger (β-An) and A. awamori (β-Aa), in reactions containing initial glucose of 700 and 900 g l?1.

Results

The reactions’ time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l?1, the final substrate conversions were 33, 38, and 23.5% for β-An, β-Aa, and β-Pd, respectively. The use of β-An yielded 103 g gentiobiose l?1 (15.5% yield), which is the highest reported for a fungal β-glucosidase. The increase in glucose concentration to 900 g l?1 resulted in a significant increase in disaccharide synthesis by β-Pd, reaching 128 g gentiobiose l?1 (15% yield), while for β-An and β-Aa, there was a shift toward the synthesis of higher oligosaccharides.

Conclusion

β-Pd and the fungal β-An and β-Aa β-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while β-Pd showed the highest productivity for gentiobiose synthesis, β-An presented the highest specificity.
  相似文献   

17.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

18.
Five known isoflavones (daidzein, formononetin, genistein, 5-O-methylgenistein and biochanin A) have been isolated from the leaves and stems of Echinospartum horridum. A sixth compound has been characterised by chemical and spectroscopic methods as the new isoflavone, 5-O-methylbiochanin A.  相似文献   

19.
A cell-free system from Andrographis paniculata tissue cultures catalysed the transesterification of administered cis, trans-farnesol-[1-3H2] with (glyceryl) oleate and palmitate present in the coconut water that forms part of the culture medium.  相似文献   

20.
Glucose is the substrate most widely used as exogenous carbon source for heterotrophic cultivation of cyanobacteria. Due to limited information about the use of different carbohydrates as carbon sources to support cyanobacterial heterotrophic metabolism, the objective of this work was to evaluate different monosaccharides (arabinose, fructose, galactose, glucose, mannose and xylose), disaccharides (lactose, maltose, sucrose and trehalose) and polysaccharides (carboxymethylcellulose, cassava starch, Hi-maize®, maltodextrin Corn Globe 1805® and xylan) as exogenous carbon source for heterotrophic culture of cyanobacterium Phormidium sp. The batch cultivation using fructose as organic carbon source resulted in the highest (p < 0.05) cell biomass (5,540 mg/L) in parallel with the highest (p < 0.05) substrate yield coefficient (0.67 mgbiomass/mgfructose). Mannose was the carbon source with the highest (p < 0.05) substrate consumption rate (3,185.7 mg/L/day) and maltodextrin was the carbohydrate with major potential to produce biomass (1,072.8 mgbiomass/L/day) and lipids (160.8 mglipids/L/day). Qualitatively, the fatty acid profiles of the lipid extract from Phormidium sp. showed predominance of saturated chains for the cultures grown with most of the carbon sources, with the exception of the ones grown with xylose and maltodextrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号