首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the microbial spoilage population for air- and vacuum-packaged meat (beef and pork) stored at 4°C was investigated over 11 days. We monitored the viable counts (mesophilic total aerobic bacteria, Pseudomonas spp., Enterobacteriaceae, lactic acid bacteria, and Enterococcus spp.) by the microbiological standard technique and by measuring the emission of volatile organic compounds (VOCs) with the recently developed proton transfer reaction mass spectrometry system. Storage time, packaging type, and meat type had statistically significant (P < 0.05) effects on the development of the bacterial numbers. The concentrations of many of the measured VOCs, e.g., sulfur compounds, largely increased over the storage time. We also observed a large difference in the emissions between vacuum- and air-packaged meat. We found statistically significant strong correlations (up to 99%) between some of the VOCs and the bacterial contamination. The concentrations of these VOCs increased linearly with the bacterial numbers. This study is a first step toward replacing the time-consuming plate counting by fast headspace air measurements, where the bacterial spoilage can be determined within minutes instead of days.  相似文献   

2.
The microbial spoilage of beef was monitored during storage at 5°C under three different conditions of modified-atmosphere packaging (MAP): (i) air (MAP1), (ii) 60% O2 and 40% CO2 (MAP2), and (iii) 20% O2 and 40% CO2 (MAP3). Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta, and lactic acid bacteria were monitored by viable counts and PCR-denaturing gradient gel electrophoresis (DGGE) analysis during 14 days of storage. Moreover, headspace gas composition, weight loss, and beef color change were also determined at each sampling time. Overall, MAP2 was shown to have the best protective effect, keeping the microbial loads and color change to acceptable levels in the first 7 days of refrigerated storage. The microbial colonies from the plate counts of each microbial group were identified by PCR-DGGE of the variable V6-V8 region of the 16S rRNA gene. Thirteen different genera and at least 17 different species were identified after sequencing of DGGE fragments that showed a wide diversity of spoilage-related bacteria taking turns during beef storage in the function of the packaging conditions. The countable species for each spoilage-related microbial group were different according to packaging conditions and times of storage. In fact, the DGGE profiles displayed significant changes during time and depending on the initial atmosphere used. The spoilage occurred between 7 and 14 days of storage, and the microbial species found in the spoiled meat varied according to the packaging conditions. Rahnella aquatilis, Rahnella spp., Pseudomonas spp., and Carnobacterium divergens were identified as acting during beef storage in air (MAP1). Pseudomonas spp. and Lactobacillus sakei were found in beef stored under MAP conditions with high oxygen content (MAP2), while Rahnella spp. and L. sakei were the main species found during storage using MAP3. The identification of the spoilage-related microbiota by molecular methods can help in the effective establishment of storage conditions for fresh meat.  相似文献   

3.
Microbial resistance to tellurite, an oxyanion of tellurium, is widespread in the biosphere, but the geochemical significance of this trait is poorly understood. As some tellurite resistance markers appear to mediate the formation of volatile tellurides, the potential contribution of tellurite-resistant microbial strains to trace element volatilization in salt marsh sediments was evaluated. Microbial strains were isolated aerobically on the basis of tellurite resistance and subsequently examined for their capacity to volatilize tellurium in pure cultures. The tellurite-resistant strains recovered were either yeasts related to marine isolates of Rhodotorula spp. or gram-positive bacteria related to marine strains within the family Bacillaceae based on rRNA gene sequence comparisons. Most strains produced volatile tellurides, primarily dimethyltelluride, though there was a wide range of the types and amounts of species produced. For example, the Rhodotorula spp. produced the greatest quantities and highest diversity of volatile tellurium compounds. All strains also produced methylated sulfur compounds, primarily dimethyldisulfide. Intracellular tellurium precipitates were a major product of tellurite metabolism in all strains tested, with nearly complete recovery of the tellurite initially provided to cultures as a precipitate. Different strains appeared to produce different shapes and sizes of tellurium containing nanostructures. These studies suggest that aerobic marine yeast and Bacillus spp. may play a greater role in trace element biogeochemistry than has been previously assumed, though additional work is needed to further define and quantify their specific contributions.  相似文献   

4.
Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.  相似文献   

5.
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard‐wired to behave in a vigorous and ecologically aggressive manner. These ‘microbial weeds’ are able to dominate the communities that develop in fertile but uncolonized – or at least partially vacant – habitats via traits enabling them to out‐grow competitors; robust tolerances to habitat‐relevant stress parameters and highly efficient energy‐generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat‐specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non‐weed species. We propose that the concept of nonweeds represents a ‘dustbin’ group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r‐strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary‐phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open‐habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.  相似文献   

6.
An investigation of the air quality and the quantity of airborne microbes was conducted in a private and a government tertiary health care centre of Davanagere in the month of November 2011 to assess the level of air borne pathogens. Using a Merck Microbial Air Sampler MAS-100NT, samples were collected in the morning and in the evening from the different environs of the private and government tertiary health care centre. The media used for the study of fungi was sabouraud dextrose agar. Aspergillus spp, Curvularia spp, Alternaria spp, Penicillium spp, Rhizopus spp, Nigrospora spp, and Fusarium spp were found in either of the tertiary health care centre. Aspergillus spp was dominant in the Government tertiary health care centre, and Alternaria spp and Curvularia spp were dominant in the private tertiary health care centre. For the bacteria, quantitative enumeration was done using soyabean casein digest agar and selective media like Escherichia coli and coliform agar and urinary tract infection agar were used in qualitative enumeration. Selected pathogens like E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Proteus mirabilis, and Entirococcus faecalis were found in either of the tertiary health care centre. Maximum number of fungi and bacteria were isolated from emergency ward and general ward of government and private health care centre. There was also considerable difference in the morning and in the evening.  相似文献   

7.
The structure of microbial communities of brown algae, red algae, and of the red alga Gracilaria verrucosa, healthy and affected with thallus rot, were comparatively investigated; 61 strains of heterotrophic bacteria were isolated and characterized. Most of them were identified to the genus level, some Vibrio spp., to the species level according to their phenotypic properties and the fatty acid composition of cellular lipids. The composition of the microflora of two species of brown algae was different. In Chordaria flagelliphormis, Pseudomonas spp. prevailed, and in Desmarestia viridis, Bacillus spp. The composition of the microflora of two red algae, G. verrucosa and Camphylaephora hyphaeoides, differed mainly in the ratio of prevailing groups of bacteria. The most abundant were bacteria of the CFB cluster and pseudoalteromonads. In addition, the following bacteria were found on the surface of the algae: Sulfitobacter spp., Halomonas spp., Acinetobacter sp., Planococcus sp., Arthrobacter sp., and Agromyces sp. From tissues of the affected G. verrucosa, only vibrios were isolated, both agarolytic and nonagarolytic. The existence of specific bacterial communities characteristic of different species of algae is suggested and the relation of Vibrio sp. to the pathological process in the tissues of G. verrucosa is supposed.  相似文献   

8.
Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus, L. acidophilus, Streptococcus thermophilus, Lactococcus lactis, Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae-incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.  相似文献   

9.
Ultrastructural examinations were performed on biofilms from eight anaerobic fixed-bed reactors filled with various packing materials and operated on fresh swine waste. By using light, UV, scanning, and transmission electron microscopy, the distribution of a diverse microbial population composed of bacteria and a few yeasts was determined. This is the first time that the ultrastructure of in situ anaerobic digestor biofilms has been reported. A large number of methanogenic bacteria were identified by their fluorescence under 420 nm of radiation. Of these, two morphologically distinct types were most prevalent in the films. Methanothrix spp. was present in high numbers at the film surface, whereas Methanosarcina spp. were commonly embedded in the lower regions of the film. Inhabitants of the film were surrounded by an exopolysaccharide matrix that was very dense toward the base. An extensive network of channels was observed throughout the matrix that may facilitate gas and nutrient exchange to the lower regions of the film.  相似文献   

10.
The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.  相似文献   

11.
Modified-atmosphere packaging (MAP) of foods in combination with low-temperature storage extends product shelf life by limiting microbial growth. We investigated the microbial biodiversity of MAP salmon and coalfish by using an explorative approach and analyzing both the total amounts of bacteria and the microbial group composition (both aerobic and anaerobic bacteria). Real-time PCR analyses revealed a surprisingly large difference in the microbial loads for the different fish samples. The microbial composition was determined by examining partial 16S rRNA gene sequences from 180 bacterial isolates, as well as by performing terminal restriction fragment length polymorphism analysis and cloning 92 sequences from PCR products of DNA directly retrieved from the fish matrix. Twenty different bacterial groups were identified. Partial least-squares (PLS) regression was used to relate the major groups of bacteria identified to the fish matrix and storage time. A strong association of coalfish with Photobacterium phosphoreum was observed. Brochothrix spp. and Carnobacterium spp., on the other hand, were associated with salmon. These bacteria dominated the fish matrixes after a storage period. Twelve Carnobacterium isolates were identified as either Carnobacterium piscicola (five isolates) or Carnobacterium divergens (seven isolates), while the eight Brochothrix isolates were identified as Brochothrix thermosphacta by full-length 16S rRNA gene sequencing. Principal-component analyses and PLS analysis of the growth characteristics (with 49 different substrates) showed that C. piscicola had distinct substrate requirements, while the requirements of B. thermosphacta and C. piscicola were quite divergent. In conclusion, our explorative multivariate approach gave a picture of the total microbial biodiversity in MAP fish that was more comprehensive than the picture that could be obtained previously. Such information is crucial in controlled food production when, for example, the hazard analysis of critical control points principle is used.  相似文献   

12.
Twelve automobile air conditioner systems from six manufacturers and three countries, selected mostly because of complaints of unpleasant odors in the passenger compartment, were examined for microbial growth by direct microscopy and enrichment culture. Mixed populations of fungi and bacteria (with occasional protozoa) were observed in biofilms in at least some of the components from all used units. The aluminum heat exchanger fins from ten evaporators demonstrated bacterial biofilms that yielded Methylobacterium mesophilicum. Penicillium viridicatum colonized components from four units. These bacteria and fungi were recoverable repeatedly from these units during ‘dry’ storage of up to 27 months. This report associates a bacterial-fungal community with disagreeable air quality in some automobiles. Received: 24 March 1999 / Accepted: 13 April 1999  相似文献   

13.
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.  相似文献   

14.
To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.  相似文献   

15.
Sake (Japanese rice wine) production is a complex, multistage process in which fermentation is performed by a succession of mixed fungi and bacteria. This study employed high-throughput rRNA marker gene sequencing, quantitative PCR, and terminal restriction fragment length polymorphism to characterize the bacterial and fungal communities of spontaneous sake production from koji to product as well as brewery equipment surfaces. Results demonstrate a dynamic microbial succession, with koji and early moto fermentations dominated by Bacillus, Staphylococcus, and Aspergillus flavus var. oryzae, succeeded by Lactobacillus spp. and Saccharomyces cerevisiae later in the fermentations. The microbiota driving these fermentations were also prevalent in the production environment, illustrating the reservoirs and routes for microbial contact in this traditional food fermentation. Interrogating the microbial consortia of production environments in parallel with food products is a valuable approach for understanding the complete ecology of food production systems and can be applied to any food system, leading to enlightened perspectives for process control and food safety.  相似文献   

16.
The treatment of odorous pollutants by microorganisms on packed waste straw and cortex was investigated at the wastewater treatment plant of the Shanghai petrochemical factory. The removal efficiency of H2S, NH3 and VOCs (volatile organic compounds) reached 98%, 91% and 90%, respectively after operation for one month at an empty bed retention time (EBRT) of 120 s. The heterotrophic bacteria were found to be the dominant microorganism in the biofilter, while fungi and actinomycetes were also present. The bacteria were mostly identified as the members of the genus Bacillus (62.5% of cultured bacteria). The single strand conformation polymorphism (SSCP) results revealed that the genus Bacillus and Pseudomonas were the predominant bacteria. The microbial diversity gradually increased as the treatment progressed, which indicated that the microbial community in the biofilter became more stable upon pollutant removal. The scanning electron microscopy (SEM) was performed to evaluate the microorganism growth on the media. It was found that the waste straw and cortex were suitable for microorganism attachment and growth, and may have potential application in odor treatment.  相似文献   

17.
The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.  相似文献   

18.
The volatile metabolites formed by 18 lactic acid bacteria, representing three genera, were extracted from a complex medium by using a Freon 11 extraction method. The Freon extracts were then analyzed by capillary gas chromatography, and certain extracts were analyzed by gas chromatography-mass spectrometry. A total of 35 major peaks, of which 20 were positively identified, were used to differentiate between the various strains. On the basis of the results obtained, it was possible to differentiate between the members of the genera Lactobacillus, Pediococcus, and Leuconostoc, as well as between various species within the genus Leuconostoc. Of the 10 Leuconostoc oenos strains included in this study, 9 yielded similar results, but it was still possible to differentiate between the various strains. L. oenos B66 differed from the other L. oenos strains. Use of the Freon 11 extraction technique to determine volatile metabolites formed by lactic acid bacteria was shown to be highly reproducible and of great value. Furthermore, certain compounds not previously known to be formed by lactic acid bacteria were found.  相似文献   

19.
Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air. Received: 2 June 1997 / Accepted: 13 June 1997  相似文献   

20.
Emerging infectious diseases usually arise from wild animal populations. In the present work, we performed a screening for bacterial infection in natural populations of New World primates. The blood cell bulk DNAs from 181 individuals of four Platyrrhini genera were PCR screened for eubacterial 16S rRNA genes. Bacteria were detected and identified in 13 distinct individuals of Alouatta belzebul, Alouatta caraya, and Cebus apella monkeys from geographically distant regions in the states of Mato Grosso and Pará, Brazil. Sequence analyses showed that these Platyrrhini bacteria are closely related not only to human pathogens Pseudomonas spp. but also to Pseudomonas simiae and sheep-Acari infecting Pseudomonas spp. The identified Pseudomonas possibly represents a group of bacteria circulating in natural monkey populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号