首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aged landfill leachates become more refractory over time and difficulty to treat. Recently, aged refuse bioreactors show great promise in treating leachates. In this study, aged refuse bioreactors were constructed to simulate landfill leachate degradation process. The characteristics of leachate were: CODcr, ∼2200 mg/L; BOD5, ∼280 mg/L; total nitrogen, ∼2030 mg/L; and ammonia, ∼1900 mg/L. Results showed that bioreactor could remove leachate pollutants effectively at hydraulic loading of 20 L/m3 d. The removal rate reduced when hydraulic loading doubled or temperature lowered. Effluent recirculation could alleviate the temperature effect. Combining aged refuse and slag biofilters could treat leachate more efficiently. Pyrosequencing analysis indicated that bacteria from Pseudomonas, Lysobacter, Bacillus and δ-proteobacter, Flexibacteraceae were more abundant in the samples. The Shannon index decreased at lower temperature, while evenness and equitability increased with recirculation. We suggest that filter medium and temperature may be the main factors for shaping bacterial community structure.  相似文献   

2.
Reviews in Environmental Science and Bio/Technology - The characteristics of landfill leachate from solid waste disposal vary, depending on waste composition, waste age, and landfilling technique....  相似文献   

3.
生物反应器填埋场系统渗滤液的脱氮性能   总被引:1,自引:0,他引:1  
利用填埋场垂直分布的好氧-缺氧-厌氧的独特生态环境,并采用填埋垃圾上层间歇曝气充氧的方式,研究了生物反应器填埋场系统渗滤液的脱N性能.结果表明,填埋垃圾上层间歇曝气充氧,促进了填埋垃圾层硝化细菌和反硝化细菌的生长,且可使反硝化细菌的数量比普通的填埋垃圾层高4~13个数量级,硝化细菌的最大数量可达到109个·g-1;营建了填埋场内硝化、反硝化等脱N反应的生物环境,有利于回流渗滤液含N化合物的去除.试验结束时,其渗滤液NH4+-N和TN浓度分别为186和289 mg·L-1,仅为对照的18%和26%.此外,填埋垃圾上层间歇曝气充氧也有利于填埋垃圾的降解,提高垃圾的稳定化效果.  相似文献   

4.
The present paper reports the results of the application of a control system, based on artificial intelligence concepts, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given to the nitritation and denitritation processes in order to enhance the nitrogen removal efficiency. Nitrification and nitrogen removal were usually higher than 98% and 95%, respectively, whereas COD removal was approximately 20-30% due to the low biodegradability of organic matter in the leachate from old landfills; therefore, external COD was added to accomplish the denitrification process. Adjusting the length of the oxic phase, almost complete inhibition of the nitrite oxidizing organisms was observed. The results confirm the effectiveness of the nitrite route for nitrogen removal optimisation in leachate treatment. A significant saving of approximately 35% in external COD addition was achieved.  相似文献   

5.
Sanitary landfilling is a proven way for disposal of municipal solid waste (MSW) in developed countries in general and in developing countries in particular, owing to its low immediate costs. On the other hand, landfilling is a matter of concern due to its generation of heavily polluted leachate. Landfill leachate becomes more refractory with time and is very difficult to treat using conventional biological processes. The aged refuse-based bioreactor/biofilter (ARB) has been shown to be a promising technology for the removal of various pollutants from landfill leachate and validates the principle of waste control by waste. Based on different environmental and operational factors, many researchers have reported remarkable pollutant removal efficiencies using ARB. This paper gives an overview of various types of ARBs used; their efficiencies; and certain factors like temperatures, loading rates, and aerobic/anaerobic conditions which affect the performance of ARBs in eliminating pollutants from leachate. Treating leachate by ARBs has been proved to be more cost-efficient, environment friendly, and simple to operate than other traditional biological techniques. Finally, future research and developments are also discussed.  相似文献   

6.
A bench-scale integrated process based on submerged aerobic powdered activated carbon-membrane bioreactor (PAC-MBR) has been utilized and established for the treatment of landfill leachate. The results showed that the submerged PAC-MBR system effectively removed biodegradable trace organic compounds by the average removal rate about 71 % at optimum food to microorganism (F/M) ratio of 0.4 gCOD/g day under a HRT of 24 h. Adding nanofiltration (NF) process increased the treatment efficiency up to 99 %. Further, adding powdered activated carbon to activated sludge (AS) resulted in a higher adsorption capacity in comparison with AS. Adsorption isotherms were investigated and fitted by the Langmuir and Freundlich isotherm models in which the Langmuir model performed better. The specific oxygen uptake rate (SOUR) showed that adding PAC reduces the effects of COD on microorganism activities. NH3–N, TKN and Heavy metals removal efficiency amounted to 97 ± 2, 96 ± 2, and 99 ± 2 %, respectively.  相似文献   

7.
Experiments were conducted to investigate the feasibility of applying constructed wetlands to treat a sanitary landfill leachate containing high nitrogen and bacterial contents. Under a tropical condition (temperature of about 30 degrees C), the constructed wetland units operating at the hydraulic retention time of 8d yielded the best treatment efficiencies with BOD(5), TN and fecal coliforms removal of 91%, 96% and more than 99%, respectively. Cadmium removal in the SFCW bed was 99.7%. Mass balance analysis, based on total nitrogen contents of the plant biomass and dissolved oxygen and oxidation-reduction potential values, suggested that 88% of the input total nitrogen were uptaken by the plant biomass. Fluorescence in situ hybridization results revealed the predominance of bacteria, including heterotrophic and autotrophic, responsible for BOD(5) removal. Nitrifying bacteria was not present in the constructed wetland beds.  相似文献   

8.
The hybrid bioreactor landfill was promising in solid waste management. In the work, the nitrogen removal and nitrogen transformation in hybrid bioreactor landfill with sequencing of facultative anaerobic and aerobic conditions was explored. The result showed that the combination of facultative anaerobic and aerobic conditions in the hybrid bioreactor landfill was indeed effective in eliminating ammonia both from the leachate and the refuse thoroughly. About 72% of nitrogen was reduced from the landfilled fresh refuse through the operation of 357 days. At the end of the experiment, the concentrations of COD, ammonia, nitrate and TN in the leachate decreased to 399.2 mg l?1, 20.6 mg N l?1, 3.7 mg N l?1 and 25.3 mg N l?1, respectively.  相似文献   

9.
In situ nitrogen removal in phase-separate bioreactor landfill   总被引:1,自引:0,他引:1  
Long Y  Guo QW  Fang CR  Zhu YM  Shen DS 《Bioresource technology》2008,99(13):5352-5361
The feasibility of in situ nitrogen removal in phase-separate bioreactor landfill was investigated. In the experiment, two sets of bioreactor landfill systems, namely conventional two-phase and in situ nitrogen removal bioreactor landfills, were operated. The in situ nitrogen removal bioreactor landfill (NBL) was comprised of a fresh-refuse filled reactor (NBLF), a methanogenic reactor (NBLM) and a nitrifying reactor (NBLN), while the two-phase bioreactor landfill (BL) used as control was comprised of a fresh-refuse filled reactor (BLF) and a methanogenic reactor (BLM). Furthermore, the methanogenic and nitrifying reactors used aged refuse as bulk agents. The results showed that in situ nitrogen removal was viable by phase-separation in the bioreactor landfill. In total 75.8 and 47.5 g of nitrogen were, respectively, removed from the NBL and the BL throughout the experiment. The methanogenic reactor used the aged refuse as medium was highly effective in removing organic matter from the fresh leachate. Furthermore, the aged refuse was also suitable to use as in situ nitrification medium. The degradation of fresh refuse was accelerated by denitrification in the initial stage (namely the initial hydrolyzing stage) despite being delayed by denitrification in a long-term operation.  相似文献   

10.
Simultaneous removal of NO(x) and SO2 from exhausted gas were investigated by studying co-culture of sulfate reducing bacteria and anaerobic denitrifying bacteria, separated from landfill leachate. When H2S, generated by sulfate reducing bacteria was chosen as the sole electron donor for anaerobic denitrifying bacteria, the co-culture system demonstrated a faster NO removal rate, higher stability and better permanence. When the feed gas flow rates of N2 and SO2 were maintained constant at 0.1 m3/h and 16 ml/min respectively, the maximum NO-removal rate could be achieved at over 92% with NO feed gas kept between 2-6 ml/min, while the SO2 removal rate was always above 95%. Long-term continuous removal of NO exhibited an evident periodicity of five days, however, the fluctuation range of NO-removal was decreasing. Moreover, the decrease of the gas flow rate and the increase in NO inlet concentration could contribute to a higher NO- removal rate.  相似文献   

11.
He R  Liu XW  Zhang ZJ  Shen DS 《Bioresource technology》2007,98(13):2526-2532
A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition.  相似文献   

12.
Summary A hybrid digester with leachate as substrate was used to determine the influence of the addition of phenol. The phenol was increased stepwise from 2 to 25 mg/l and then to 30, 40, 50 and 60 mg/l leachate. Within 24 h the addition caused a significant decrease in the COD removal and biogas production while the methane content increased. Phenol loading was characterised by the accumulation of volatile fatty acids. With the continuous addition of phenol, a recovery time of 28 d was required for the performance to reach the control values. As the concentration was increased, the recovery time shortened to 8 d at 20 mg/l. At higher concentrations (>50 mg/l) the recovery time was found to increase to >60 d.  相似文献   

13.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

14.
The removal of phthalic acid diesters (PAEs) in municipal solid waste (MSW) from two simulated landfill reactors was compared. The results showed that the original concentrations of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP) in the refuse were 3.3 μg g−1, 18.5 μg g−1 and 0.8 μg g−1, respectively. The concentrations of DMP and DBP in both leachate and refuse decreased greatly during decomposition of the waste in both reactors. The major loss of PAEs from the landfill occurred during an active methanogenic environment with a low concentration of volatile fatty acids (VFA) in the later period. In addition, strong correlations were found between the residual DMP, DBP concentrations and the biologically degradable material (BDM) of the refuse. Finally, PAEs degraded more rapidly in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill with direct leachate discharge.  相似文献   

15.
Eukaryotes may influence pollutant degradation processes in groundwater ecosystems by activities such as predation on bacteria and recycling of nutrients. Culture-independent community profiling and phylogenetic analysis of 18S rRNA gene fragments, as well as culturing, were employed to obtain insight into the sediment-associated eukaryotic community composition in an anaerobic sandy aquifer polluted with landfill leachate (Banisveld, The Netherlands). The microeukaryotic community at a depth of 1 to 5 m below the surface along a transect downgradient (21 to 68 m) from the landfill and at a clean reference location was diverse. Fungal sequences dominated most clone libraries. The fungal diversity was high, and most sequences were sequences of yeasts of the Basidiomycota. Sequences of green algae (Chlorophyta) were detected in parts of the aquifer close (<30 m) to the landfill. The bacterium-predating nanoflagellate Heteromita globosa (Cercozoa) was retrieved in enrichments, and its sequences dominated the clone library derived from the polluted aquifer at a depth of 5 m at a location 21 m downgradient from the landfill. The number of culturable eukaryotes ranged from 10(2) to 10(3) cells/g sediment. Culture-independent quantification revealed slightly higher numbers. Groundwater mesofauna was not detected. We concluded that the food chain in this polluted aquifer is short and consists of prokaryotes and fungi as decomposers of organic matter and protists as primary consumers of the prokaryotes.  相似文献   

16.
Membrane inlet mass spectrometry (MIMS) was used to monitor continuously and simultaneously the concentrations of dissolved gases (O2, CO2, CH4) within the treatment bed of a willow vegetation filter treating leachate at a landfill site in mid Wales. The distribution of dissolved gasses within the bed was shown to be highly heterogeneous at the small spatial scale with considerable variation between vertical profiles measured simultaneously at different locations. In general, aerobic conditions were observed above the water table with reduced levels of oxygen and increasing levels of carbon dioxide and methane below it. Distinct pockets of oxygen (up to 200 μM) were observed in anaerobic zones and pockets of reduced oxygen and elevated carbon dioxide were observed in the aerobic zone. Pockets of methane were observed in some profiles coexisting with up to 200 μM oxygen at 5 cm depth. These observations confirm the hypothesis that micro-sites exists within the soil/root matrix where aerobic organic matter decomposition and anaerobic processes such as methanogenesis can occur in relatively close proximity to each other. We hypothesise that the distribution of dissolved gases is determined by rapid diffusion of air maintaining aerobic conditions above the water table, removal of oxygen by microbial processes creating anaerobic conditions below the water table and the distribution of willow roots in the soil which create local aerobic zones by oxygen release.  相似文献   

17.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

18.
Membrane inlet mass spectrometry (MIMS) was used to monitor continuously and simultaneously the concentrations of dissolved gases (O2, CO2, CH4), in the willow root zone at the laboratory scale, and within the treatment bed of a willow vegetation filter treating leachate at a landfill site in mid Wales. These results demonstrate that willows are able to release oxygen into the root zone which accumulates during daylight. Diurnal cycles of oxygen, carbon dioxide, and methane were observed, whereby CO2 and CH4 varied reciprocally in relation to O2. The intensity of these cycles appeared to be related to light intensity and temperature. Oxygen was shown to fluctuate between completely anaerobic and fully aerated (300 μM), between day and night in sunny conditions.  相似文献   

19.
A control scheme was developed for the automation of toluene removal in a cyclical bioreactor. Toluene was added to the self-cycling fermentor by diffusion across a silicone membrane. Transient dissolved oxygen, carbon dioxide evolution, and oxidation-reduction potential (ORP) were screened as potential control variables. Through experimentation, ORP was deemed most effective. Control algorithms based on real-time estimates of the first and second derivatives of the ORP signal were tested. Although both approaches resulted in stable operation of the reactor, average toluene removal efficiencies of 95% were realized when control was based on the second derivative. This was significantly higher than the 77% efficiencies obtained when the control scheme centered on the first derivative of the transient ORP signal. The system developed was self-regulating, ensuring that a high toluene removal rate, on the order of 1.1 g h(-1), was maintained from cycle to cycle.  相似文献   

20.
Long Y  Lao HM  Hu LF  Shen DS 《Bioresource technology》2008,99(8):2787-2794
The effects of in situ nitrogen removal on degradation of municipal solid waste (MSW) in bioreactor landfill system were investigated. The in situ nitrogen removal bioreactor landfill (NBL) consisted of fresh-refuse filled, methanogenic and nitrifying reactors was operated. The two-phase bioreactor landfill (BL) comprised of fresh-refuse filled and methanogenic reactors was used as control. The methanogenic and nitrifying reactors were all loaded with aged refuse whose placement time was 6-7 yr. Furthermore, the nitrifying reactor was in situ aerated. The results showed that the degradation of fresh-refuse was delayed and CH4 production also was reduced in the in situ nitrogen removal bioreactor landfill. It was feasible to perform in situ ammonia nitrification in aged refuse. Moreover, the efficiency of oxygen utility was high during the in situ nitrification because of the porous characteristic of aged refuse. Supplementing only 8.5mg O2 mg(-1)Nd(-1) to aged refuse could make ammonia removed completely. However, aeration did not accelerate the further stabilization of aged refuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号