首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two outer capsid rotavirus proteins, VP3 and VP7, have been found to elicit neutralizing-antibody production, but the immunogenicity of these proteins during human rotavirus infection has not been determined. The relative amounts of serum neutralizing antibody against the VP3 and VP7 proteins of the CJN strain of human rotavirus were, therefore, determined in adult subjects before and after infection with this virus. Reassortant strains of rotavirus that contained the CJN gene segment for only one of these two neutralization proteins were isolated and used for this study. The geometric mean titer of serum neutralizing antibody to a reassortant virus (CJN-M) that contained VP7 of CJN and VP3 of another human rotavirus was 12.7 times less than that of antibody to CJN before infection and 20.3 times less after infection. This indicated that most neutralizing antibody was against the VP3 rather than the VP7 protein of CJN. This result was confirmed with other reassortants between CJN and animal rotavirus strains (EDIM and rhesus rotavirus). These findings suggest that VP3 is the primary immunogen that stimulates neutralizing antibody during at least some rotavirus infections of humans.  相似文献   

2.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immun-ological diagnosis methods for WSSV infection.  相似文献   

3.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.  相似文献   

4.
Sera from 17 of 18 adult volunteers challenged with a virulent serotype 1 rotavirus strain (D) were examined for prechallenge antibody levels against several well-defined rotavirus VP7 and VP4 neutralization epitopes by a competitive epitope-blocking immunoassay (EBA) in order to determine whether correlates of resistance to diarrheal illness could be identified. The presence of prechallenge serum antibody at a titer of greater than or equal to 1:20 that blocked the binding of a serotype 1 VP7-specific monoclonal antibody (designated 2C9) that maps to amino acid residue 94 in antigenic site A on the serotype 1 VP7 was significantly associated with resistance to illness or shedding (P less than 0.001) or illness and shedding (P less than 0.01) following challenge with the serotype 1 virus. In addition, an EBA antibody titer of greater than or equal to 1:20 in prechallenge serum against a serotype 3 VP7-specific epitope (defined by monoclonal antibody 954/159) that maps to amino acid 94 on the serotype 3 VP7 was also significantly associated with resistance to illness or shedding (P = 0.02), with a trend for protection against illness and shedding. A trend was also noted between the presence of EBA antibody against a cross-reactive VP4 epitope common to many human rotavirus strains, including the challenge virus, or a rhesus monkey rotavirus strain-specific VP4 antigenic site, and resistance to illness or shedding. These data confirm that the presence of serum antibody correlates with resistance to rotavirus illness or shedding but, in addition, demonstrate the association of antibody to a specific epitope with resistance to illness or shedding. These data also suggest that antigenic site A on the rotavirus VP7, composed of amino acids 87 to 96, may be involved in the formation of a major protective epitope. Further study of the role of this epitope in the development of homotypic and heterotypic immunity to rotaviruses following natural or vaccine-induced infection may be important in the development of strategies for control of rotavirus diarrheal disease.  相似文献   

5.
A single-gene substitution reassortant 11-1 was generated from two porcine rotaviruses, OSU (serotype 5) and Gottfried (serotype 4). This reassortant derived 10 genes, including gene 4 encoding VP3, from the OSU strain and only gene 9, encoding a major neutralization glycoprotein (VP7), from the Gottfried strain and was thus designated VP3:5; VP7:4. Oral administration of this reassortant to colostrum-deprived gnotobiotic newborn pigs induced a high level of neutralizing antibodies not only to Gottfried VP7 but also to OSU VP3, thus demonstrating that VP3 is as potent an immunogen as VP7 in inducing neutralizing antibodies during experimental oral infection. Gnotobiotic piglets infected previously with the reassortant were completely resistant to oral challenge with the virulent Gottfried strain (VP3:4; VP7:4), as indicated by failure of symptoms to develop and lack of virus shedding. Similarly, prior infection with the reassortant induced almost complete protection against diarrhea and significant restriction of virus replication after oral challenge with the virulent OSU strain (VP3:5; VP7:5). Thus, it appears that (i) the immune system of the piglet responds equally well to two rotavirus outer capsid proteins, VP3 and VP7, during primary enteric rotavirus infection; (ii) antibody to VP3 and antibody to VP7 are each associated with resistance to diarrhea; and (iii) infection with a reassortant rotavirus bearing VP3 and VP7 neutralization antigens derived from two viruses of different serotype induces immunity to both parental viruses. The relevance of these findings to the development of effective reassortant rotavirus vaccines is discussed.  相似文献   

6.
The unique N-terminal region of the parvovirus VP1 capsid protein is required for infectivity by the capsids but is not required for capsid assembly. The VP1 N terminus contains a number of groups of basic amino acids which resemble classical nuclear localization sequences, including a conserved sequence near the N terminus comprised of four basic amino acids, which in a peptide can act to transport other proteins into the cell nucleus. Testing with a monoclonal antibody recognizing residues 2 to 13 of VP1 (anti-VP1-2-13) and with a rabbit polyclonal serum against the entire VP1 unique region showed that the VP1 unique region was not exposed on purified capsids but that it became exposed after treatment of the capsids with heat (55 to 75 degrees C), or urea (3 to 5 M). A high concentration of anti-VP1-2-13 neutralized canine parvovirus (CPV) when it was incubated with the virus prior to inoculation of cells. Both antibodies blocked infection when injected into cells prior to virus inoculation, but neither prevented infection by coinjected infectious plasmid DNA. The VP1 unique region could be detected 4 and 8 h after the virus capsids were injected into cells, and that sequence exposure appeared to be correlated with nuclear transport of the capsids. To examine the role of the VP1 N terminus in infection, we altered that sequence in CPV, and some of those changes made the capsids inefficient at cell infection.  相似文献   

7.
Ros C  Gerber M  Kempf C 《Journal of virology》2006,80(24):12017-12024
The unique region of the capsid protein VP1 (VP1u) of human parvovirus B19 (B19) elicits a dominant immune response and has a phospholipase A(2) (PLA(2)) activity, which is necessary for the infection. In contrast to the rest of the parvoviruses, the VP1u of B19 is thought to occupy an external position in the virion, making this region a promising candidate for vaccine development. By using a monoclonal antibody against the most-N-terminal portion of VP1u, we revealed that this region rich in neutralizing epitopes is not accessible in native capsids. However, exposure of capsids to increasing temperatures or low pH led to its progressive accessibility without particle disassembly. Although unable to bind free virus or to block virus attachment to the cell, the anti-VP1u antibody was neutralizing, suggesting that the exposure of the epitope and the subsequent virus neutralization occur only after receptor attachment. The measurement of the VP1u-associated PLA(2) activity of B19 capsids revealed that this region is also internal but becomes exposed in heat- and in low-pH-treated particles. In sharp contrast to native virions, the VP1u of baculovirus-derived B19 capsids was readily accessible in the absence of any treatment. These results indicate that stretches of VP1u of native B19 capsids harboring neutralizing epitopes and essential functional motifs are not external to the capsid. However, a conformational change renders these regions accessible and triggers the PLA(2) potential of the virus. The results also emphasize major differences in the VP1u conformation between natural and recombinant particles.  相似文献   

8.
Aleutian mink disease parvovirus (ADV) causes a persistent infection associated with circulating immune complexes, immune complex disease, hypergammaglobulinemia, and high levels of antiviral antibody. Although antibody can neutralize ADV infectivity in Crandell feline kidney cells in vitro, virus is not cleared in vivo, and capsid-based vaccines have proven uniformly ineffective. Antiviral antibody also enables ADV to infect macrophages, the target cells for persistent infection, by Fc-receptor-mediated antibody-dependent enhancement (ADE). The antibodies involved in these unique aspects of ADV pathogenesis may have specific targets on the ADV capsid. Prominent differences exist between the structure of ADV and other, more-typical parvoviruses, which can be accounted for by short peptide sequences in the flexible loop regions of the capsid proteins. In order to determine whether these short sequences are targets for antibodies involved in ADV pathogenesis, we studied heterologous antibodies against several peptides present in the major capsid protein, VP2. Of these antibodies, a polyclonal rabbit antibody to peptide VP2:428-446 was the most interesting. The anti-VP2:428-446 antibody aggregated virus particles into immune complexes, mediated ADE, and neutralized virus infectivity in vitro. Thus, antibody against this short peptide can be implicated in key facets of ADV pathogenesis. Structural modeling suggested that surface-exposed residues of VP2:428-446 are readily accessible for antibody binding. The observation that antibodies against a single target peptide in the ADV capsid can mediate both neutralization and ADE may explain the failure of capsid-based vaccines.  相似文献   

9.
The purified capsid proteins VP1, VP2, and VP3 of foot-and-mouth disease virus type A12 strain 119 emulsified with incomplete Freund's adjuvant were studied in swine and guinea pigs. Swine inoculated on days 0, 28, and 60 with 100-mug doses of VP3 were protected by day 82 against exposure to infected swine. Serums from animals inoculated with VP3 contained viral precipitating and neutralizing antibodies, but such serums recognized fewer viral antigenic determinants than did antiviral serums. Capsid proteins VP1 and VP2 did not produce detectable antiviral antibody in guinea pigs, and antiviral antibody responses in swine to a mixture of VP1, VP2, and VP3 were lower than the responses to VP3 alone. However, when swine were inoculated with VP1, VP2, and VP3 separately at different body sites, no interference with the response to VP3 was observed. Vaccine containing VP3 isolated from acetylethylenimine-treated virus appeared less protective for swine than vaccine containing VP3 from nontreated virus. Trypsinized virus, which contains the cleaved peptides VP3a and VP3b rather than intact VP3, produced approximately the same levels of antiviral antibody responses in guinea pigs as did virus. Conversely, an isolated mixture of VP3a and VP3b did not produce detectable antiviral antibody responses in guinea pigs. The VP3a-VP3b mixture did, however, sensitize guinea pigs to elicit such responses following reinoculation with a marginally effective dose of trypsinized virus.  相似文献   

10.
Parvovirus B19 is the causative agent of "fifth disease" of childhood. It has been implicated in a variety of conditions, including unsuccessful pregnancy and rheumatoid arthritis, and is a potential contaminant of blood products. There has been little study of immunity to parvovirus B19, and the exact nature of the protective humoral and cell-mediated immune response is unclear. Immune responses to purified virus capsid proteins, VP1 and VP2, were examined from a cohort of recently infected children and compared with responses from long-term convalescent volunteers. The results demonstrate that antibody reactivity is primarily maintained against conformational epitopes in VP1 and VP2. The unique region of VP1 appears to be a major target for cell-mediated immune responses, particularly in recently infected individuals. We confirm that antibody reactivity against linear epitopes of VP2 is lost shortly after infection but find no evidence of the proposed phenotypic switch in either the subclass of parvovirus B19-specific antibody or the pattern of cytokine production by antigen-specific T cells. The dominant subclass of specific antibody detected from both children and adults was immunoglobulin G1. No evidence was found for interleukin 4 (IL-4) or IL-5 production by isolated lymphocytes from children or adults. In contrast, lymphocytes from convalescent adults produced a typical type 1 response associated with high levels of IL-2 and gamma interferon (IFN-gamma). However, we observed a significant (P<0.001) deficit in the production of IFN-gamma in response to VP1 or VP2 from lymphocytes isolated from children. Taken together, these results imply that future parvovirus B19 vaccines designed for children will require the use of conformationally preserved capsid proteins incorporating Th1 driving adjuvants. Furthermore, these data suggest novel mechanisms whereby parvovirus B19 infection may contribute to rheumatoid arthritis and unsuccessful pregnancy.  相似文献   

11.
White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.  相似文献   

12.
The coxsackievirus group B (CVB) of the genus Enterovirus and the species human enterovirus B is a nonenveloped virus containing a single-stranded positive-sense RNA genome. Coxsackievirus has icosahedral symmetry and four capsid proteins, VP1, VP2, VP3, and VP4. Specific antibodies against each viral protein are prerequisites for various studies. In this study, we developed seven peptide-derived antibodies directed against coxsackievirus VP1 (NO1-NO5), VP2 (B3), and VP3 (GL3). We developed a type-specific antibody (NO1) and broadly cross-reactive antibodies (NO3 and NO5) to VP1. Anti-VP2 and anti-VP3 antibodies (B3 and GL3, respectively) are also cross-reactive to human enterovirus B such as CVB and echoviruses. Their sensitivities and reactivities are likely to be better than those of the commercial VP1 monoclonal antibody (MAb). The dot-blot analysis also showed that NO5 against VP1 is able to detect less than 1 microg [2x10(6) plaque-forming unit (pfu) of CVB3] of viruses, suggesting that it could be used to develop a diagnostic kit that can directly detect human enterovirus B. The antibodies produced here may allow us to undertake several studies, such as those involving viral trafficking, expression kinetics, and the roles of viral proteins in infection, and the development of diagnostic kits.  相似文献   

13.
The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection.  相似文献   

14.
胡楠  董战旗  陈婷婷  潘敏慧 《昆虫学报》2015,58(11):1222-1228
【目的】家蚕Bombyx mori核型多角体病毒(BmNPV)核衣壳蛋白VP39为病毒装配所必需。本研究旨在初探VP39在病毒侵染家蚕细胞过程中的功能及特征,以期为家蚕抗病毒研究提供研究基础。【方法】本研究通过构建原核表达载体,诱导原核表达得到多克隆抗体,以Western blot验证VP39表达时相;构建真核表达载体,转染细胞后以免疫荧光手段观测VP39表达定位及影响病毒增殖现象。【结果】制备了VP39多克隆抗体。VP39在病毒感染后大量定位于家蚕细胞核,部分定位于胞质,而过表达的VP39定位于家蚕细胞胞质;过表达VP39后抑制BmNPV感染家蚕细胞。【结论】在BmN-SWU1细胞中过表达VP39会影响BmNPV的扩散,导致BmNPV感染细胞数目大量减少。该结果为VP39调控宿主与病毒的相互作用提供了新的思路。  相似文献   

15.
将鸡贫血病毒vp1和vp2基因分别克隆入转移载体pBacPAK8中,获得重组转移质粒pBac-vp1和pBac-vp2。以上两质粒分别与CunI酶切线性化的亲本病毒Bm-Bacpak6DNA共转染家蚕细胞,通过蓝白斑筛选,纯化得到重组病毒Bm-vp1和Bm-vp2。PCR分析表明vp1和vp2基因已整合进杆状病毒基因组中。将Bm-vp1和Bm-vp2共感染5龄家蚕,通过表达产物免疫SPF鸡产生的抗血清与CAV感染的MDCC-MSB1细胞的间接荧光抗体分析,证明表达产物能诱导鸡产生的抗体,而且能够保护子代鸡免受CAV的攻击。该研究表明,表达VP1和VP2蛋白的重组家蚕杆状病毒(Recombinant BmNP)是很有前途的CAV亚单位疫苗的生产系统。  相似文献   

16.
In vitro morphogenesis of foot-and-mouth disease virus.   总被引:5,自引:5,他引:0       下载免费PDF全文
Foot-and-mouth disease virion RNA is translated efficiently and completely in a rabbit reticulocyte lysate cell-free system. Treatment of cell-free lysates with monospecific serum prepared against the individual viral structural proteins or with monoclonal antibodies prepared against the inactivated virus or against a viral structural protein precipitated all of the structural proteins, suggesting that structural protein complexes were formed in vitro. Sucrose gradient analysis of the cell-free lysate indicated that complexes sedimenting at 5, 14, 60 to 70, and ca. 110S were assembled in vitro. Structural proteins VP0, VP1, and VP3 were the major polypeptides found in these complexes. The material sedimenting at 110S, i.e., containing VP0, VP1, and VP3, was precipitated by a 140S-specific monoclonal antibody but not by a 12S subunit-specific monoclonal antibody, suggesting that this capsid structure contained at least one epitope present on the intact virus.  相似文献   

17.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

18.
Infectious bursal disease virus (IBDV) causes a highly immunosuppressive disease in chickens. Currently available, live IBDV vaccines can lead to generation of variant viruses. We have developed an alternative vaccine that will not create variant IBDV. By using the reverse genetics approach, we devised a recombinant Newcastle disease virus (NDV) vector from a commonly used vaccine strain LaSota to express the host-protective immunogen VP2 of a variant IBDV strain GLS-5. The gene encoding the VP2 protein of the IBDV was inserted into the most 3'-proximal locus of a full-length NDV cDNA for high-level expression. We successfully recovered the recombinant virus, rLaSota/VP2. The rLaSota/VP2 was genetically stable, at least up to 12 serial passages in chicken embryos, and was shown to express the VP2 protein. The VP2 protein was not incorporated into the virions of recombinant virus. Recombinant rLaSota/VP2 replicated to a titer similar to that of parental NDV strain LaSota in chicken embryos and cell cultures. To assess protective efficacy of the rLaSota/VP2, 2-day-old specific-pathogen-free chickens were vaccinated with the recombinant virus and challenged with a highly virulent NDV strain Texas GB or IBDV variant strain GLS-5 at 3 weeks postvaccination. Vaccination with rLaSota/VP2 generated antibody responses against both NDV and IBDV and provided 90% protection against NDV and IBDV. Booster immunization induced higher levels of antibody responses against both NDV and IBDV and conferred complete protection against both viruses. These results indicate that the recombinant NDV can be used as a vaccine vector for other avian pathogens.  相似文献   

19.
Although the etiology of multiple sclerosis (MS) is not known, several factors play a role in this disease: genetic contributions, immunologic elements, and environmental factors. Viruses and virus infections have been associated with the initiation and/or enhancement of exacerbations in MS. Theiler’s murine encephalomyelitis virus (TMEV) infection of mice is one of the animal models used to mimic MS. In other animal model systems, DNA vaccination has been used to protect animals against a variety of virus infections. To explore the utility of DNA vaccination, we have constructed eukaryotic expression vectors encoding the TMEV capsid proteins VP1, VP2, and VP3. SJL/J mice were vaccinated intramuscularly once, twice, or three times with the different capsid protein cDNAs. This was followed by intracerebral TMEV infection to determine the effects of DNA vaccination on the course of TMEV-induced central nervous system (CNS) demyelinating disease. We found that vaccination of mice three times with cDNA encoding VP2 led to partial protection of mice from CNS demyelinating disease as determined by a decrease in clinical symptoms and histopathology. Vaccination of mice with cDNA encoding VP3 also led to a decrease in clinical symptoms. In contrast, mice vaccinated with cDNA encoding VP1 experienced a more severe disease with an earlier onset of clinical signs and enhanced histopathology compared with control mice. There was no correlation between anti-TMEV antibody titers and disease course. These results indicate that DNA immunization can modify chronic virus-induced demyelinating disease and may eventually lead to potential treatments for illnesses such as MS.  相似文献   

20.

Background

Viral envelope proteins are always proposed to exert important function during virus infection and replication. Vertebrate iridoviruses are enveloped large DNA virus, which can cause great economic losses in aquaculture and ecological destruction. Although numerous iridovirus envelope proteins have been identified using bioinformatics and proteomic methods, their roles in virus infection remained largely unknown.

Methods

Using SMART and TMHMM programs, we investigated the structural characteristics of Singapore grouper iridovirus (SGIV) VP19. A specific antibody against VP19 was generated and the expression profile of VP19 was clarified. The subcellular localization of VP19 in the absence or presence of other viral products was determined via transfection and immune fluorescence assay. In addition, Western blot assay and electron microscopy examination were performed to demonstrate whether SGIV VP19 was an envelope protein or a capsid protein.

Results

Here, SGIV VP19 was cloned and characterized. Among all sequenced iridoviruses, VP19 and its orthologues shared common features, including 19 invariant cysteines, a proline-rich motif and a predicted transmembrane domain. Subsequently, the protein synthesis of VP19 was only detected at the late stage of SGIV infection and inhibited obviously by treating with AraC, confirming that VP19 was a late expressed protein. Ectopic expression of EGFP-VP19 in vitro displayed a punctate pattern in the cytoplasm. In SGIV infected cells, the newly synthesized VP19 protein was initially localized in the cytoplasm in a punctate pattern, and then aggregated into the virus assembly site at the late stage of SGIV infection, suggesting that other viral protein products were essential for VP19’s function during SGIV infection. In addition, Western blot assay and electron microscopy observation revealed that SGIV VP19 was associated with viral envelope, which was different from major capsid protein (MCP).

Conclusion

Taken together, the current data suggested that VP19 represented a conserved envelope protein in iridovirus, and might contribute greatly to virus assembly during virus infection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号