共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant enzyme from Lysinibacillus fusiformis was expressed, purified, and identified as an oleate hydratase because the hydration activity of the enzyme was the highest for oleic acid (with a k (cat) of 850?min(-1) and a K (m) of 540?μM), followed by palmitoleic acid, γ-linolenic acid, linoleic acid, myristoleic acid, and α-linolenic acid. The optimal reaction conditions for the enzymatic production of 10-hydroxystearic acid were pH 6.5, 35?°C, 4% (v/v) ethanol, 2,500?U ml(-1) (8.3?mg?ml(-1)) of enzyme, and 40?g l(-1) oleic acid. Under these conditions, 40?g l(-1) (142?mM) oleic acid was converted into 40?g l(-1) (133?mM) 10-hydroxystearic acid for 150?min, with a molar yield of 94% and a productivity of 16?g l(-1)?h(-1), and olive oil hydrolyzate containing 40?g l(-1) oleic acid was converted into 40?g l(-1) 10-hydroxystearic acid for 300?min, with a productivity of 8?g l(-1)?h(-1). 相似文献
2.
3.
定点突变改造提高纺锤形赖氨酸芽孢杆菌氨基甲酸乙酯水解酶稳定性 总被引:2,自引:0,他引:2
氨基甲酸乙酯(Ethyl carbamate,EC)是一种存在于发酵食品和酿造酒精饮料中的潜在致癌物质。利用生物酶法去除食品饮料中的EC是一种较为安全有效的方法。本研究以来源于赖氨酸芽孢杆菌Lysinibacillus fusiformis SC02的氨基甲酸乙酯水解酶为研究对象,采用计算机辅助设计突变位点,构建了其不稳定区域Q328位点的饱和突变体。通过酶学性质分析发现,突变体Q328C和Q328V在40℃下的半衰期分别提高了7.46和1.99倍,Q328R在高温下也有比原酶更好的耐受性。此外,突变体Q328C对乙醇的耐受性和酸耐受性也有所提高。对氨基甲酸乙酯水解酶分子改造的结果表明,通过改造其不稳定区域Q328位点,可以提高酶的热稳定性及对酸和乙醇的耐受性。 相似文献
4.
A putative fatty acid hydratase from Stenotrophomonas maltophilia was cloned and expressed in Escherichia coli. The recombinant enzyme showed the highest hydration activity for oleic acid among the fatty acids tested, indicating that the enzyme is an oleate hydratase. The optimal conditions for the production of 10-hydroxystearic acid from oleic acid using whole cells of recombinant E. coli containing the oleate hydratase were pH 6.5, 35°C, 0.05% (w/v) Tween 40, 10 g l(-1) cells, and 50 g l(-1) oleic acid. Under these conditions, whole recombinant cells produced 49 g l(-1) 10-hydroxystearic acid for 4 h, with a conversion yield of 98% (w/w), a volumetric productivity of 12.3 g l(-1) h(-1), and a specific productivity of 1.23 g g-cells(-1) h(-1), which were 18%, 2.5-, and 2.5-fold higher than those of whole wild-type S. maltophilia cells, respectively. This is the first report of 10-hydroxystearic acid production using recombinant cells and the concentration and productivity are the highest reported thus far among cells. 相似文献
5.
Gupta S Goyal R Nirwan J Cameotra SS Tejoprakash N 《Journal of microbiology and biotechnology》2012,22(5):684-689
In the present study, an efficient mercury-tolerant bacterial strain (RS-5) was isolated from heavy-metalcontaminated industrial effluent. Under shake flask conditions, 97% of the supplemented mercuric chloride was sequestered by the biomass of RS-5 grown in a tryptone soy broth. The sequestered mercuric ions were transformed inside the bacterial cells, as an XRD analysis of the biomass confirmed the formation of mercurous chloride, which is only feasible following the reaction of the elemental mercury and the residual mercuric chloride present within the cells. Besides the sequestration and intracellular transformation, a significant fraction of the mercury (63%) was also volatilized. The 16S rRNA gene sequence of RS-5 revealed its phylogenetic relationship with the family Bacillaceae, and a 98% homology with Lysinibacillus fusiformis, a Gram-positive bacterium with swollen sporangia. This is the first observation of the sequestration and volatilization of mercuric ions by Lysinibacillus sp. 相似文献
6.
A bacterial isolate, Pseudomonas aeruginosa (PR3), has been reported to produce a new compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD), from ricinoleic acid (Kuo TM, LK Manthey and CT Hou. 1998. J Am Oil Chem Soc 75: 875–879). The
reaction is unique in that it involves an introduction of two additional hydroxyl groups at carbon 7 and 10 and a rearrangement
of the double bond from carbon 9–10 (cis) to 8–9 (trans). In an effort to elucidate the metabolic pathway involved in the formation of TOD from ricinoleic acid by PR3, we have isolated
another compound from the reaction mixture using HPLC. The structure of the new compound was determined to be 10, 12-dihydroxy-8(E)-octadecenoic acid (DHOD) by GC/MS, FTIR, and NMR. The structural similarity between DHOD and TOD and the results from the
time course study of the above two compounds strongly suggested that DHOD was an intermediate in the bioconversion of ricinoleic
acid to TOD by PR3. The optimum pH and temperature for the production of DHOD from ricinoleic acid by PR3 was 6.5 and 25°C,
respectively. This is the first report on the production of 10,12-dihydroxy-8(E)-octadecenoic acid from ricinoleic acid by PR3. Journal of Industrial Microbiology & Biotechnology (2000) 24, 167–172.
Received 28 July 1999/ Accepted in revised form 18 November 1999 相似文献
7.
Eun-Yeong Jeon Jung-Hoo Lee Kyung-Mi Yang Young-Chul Joo Deok-Kun Oh Jin-Byung Park 《Process Biochemistry》2012,47(6):941-947
Microbial hydroxylation of long chain fatty acids has been extensively investigated. However, biotransformation productivity remains below ca. 1.0 g/g cell dry weight (CDW)/h under process conditions. In the present study, a highly efficient microbial hydroxylation process to convert oleic acid into 10-hydroxystearic acid was developed. A recombinant Escherichia coli expressing ohyA, the gene encoding oleate hydratase of Stenotrophomonas maltophilia, was used as the biocatalyst. Investigation of the ohyA expression and biotransformation conditions (e.g., inducer concentration, gene expression period before initiating biotransformation, mixing condition of reaction medium) enabled 10-hydroxystearic acid to accumulate to a final concentration of approximately 46 g/L in the culture medium. The specific product formation rate and product yield reached approximately 2.0 g/g CDW/h (i.e., 110 U/g CDW) and 91%, respectively. The specific product formation rate was more than 3-fold higher than those of a bioprocess using wild type Stenotrophomonas sp. cells. Additionally, the product of the whole-cell biotransformation was recovered at a yield of 70.9% and a purity of 99.7% via solvent fraction crystallization at low temperature. These results will contribute to developing a biological process for hydroxylation of oleic acid. 相似文献
8.
Rosalina Wisastra Petra A.M. Kok Nikolaos Eleftheriadis Matthew P. Baumgartner Carlos J. Camacho Hidde J. Haisma Frank J. Dekker 《Bioorganic & medicinal chemistry》2013,21(24):7763-7778
Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid binding, whereas the larger inhibitor 23d blocks the enzyme active site. 相似文献
9.
A highly active mosquitocidal mutant of Lysinibacillus sphaericus Ahmed 2362, namely, UCR-146, was efficiently produced on cottonseed meal (CSM) medium, using sand as a carrier under solid state fermentation (SSF). The optimum CSM concentration for the highest sporulation and toxin formation was 12%. The maximum toxicity of the tested organism against second instar larvae of Culex pipiens was obtained at 25% moisture content, initial pH 6–7, 1% sodium acetate, 18.9×106 CFU/g inoculum and 6 days incubation period at 30°C. Pilot scale production of UCR-146 under the optimum SSF conditions was assessed in aluminium trays. Spore count, mortality of larvae and LC50 of the final product were 5.5×1010 CFU/g, 72% at 1 part per million (PPM) and 0.54 PPM, respectively. These results were comparable with those obtained from bench-scale production (in flasks). The cost of 1 kg of this bio-larvicide was estimated at US $0.34. 相似文献
10.
Makabe H Miyazaki S Kamo T Hirota M 《Bioscience, biotechnology, and biochemistry》2003,67(9):2038-2041
The methanolic extract of Myrsine seguinii yielded the novel anti-inflammatory compound, myrsinoic acid E (1), whose structure was elucidated to be 3,5-digeranyl-4-hydroxy benzoic acid. We synthesized 1- and its 3,5-diprenyl (2) and 3,5-difarnesyl analogues (3). Compounds 1-3 suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation of mouse ears by 59%, 14%, and 69% at a dose of 1.4 micromol. 相似文献
11.
Hashimoto K Suzuki H Taniguchi K Noguchi T Yohda M Odaka M 《The Journal of biological chemistry》2008,283(52):36617-36623
Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of alphaCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by alphaCys114-SOH. 相似文献
12.
Dauenpen Meesapyodsuk Yan Chen Siew Hon Ng Jianan Chen Xiao Qiu 《Journal of lipid research》2015,56(11):2102-2109
Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a “push” (synthesis) and “pull” (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. 相似文献
13.
14.
Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum 总被引:11,自引:0,他引:11
The production of a novel polygalacturonic acid bioflocculant REA-11 from a newly isolated strain, Corynebacterium glutamicum CCTCC M201005, was investigated. Sucrose was chosen as a carbon source for REA-11 production. Complex nitrogen sources containing urea and an organic nitrogen compound enhanced both bacterial growth and REA-11 production, among which urea plus corn steep liquor was shown to be the most efficient combination. A cost-effective medium for REA-11 production mainly comprised 17 g/l sucrose, 0.45 g/l urea, and 5 ml/l corn steep liquor, under which conditions the flocculating activity reached 390 U/ml. The molar ratio of carbon to nitrogen (C/N) significantly affected REA-11 production, where a C/N ratio of 20:1 was shown to be the best. Interestingly, by simultaneously feeding sucrose and urea at a C/N ratio of 20:1 at 24 h of fermentation, REA-11 production (458 U/ml) was enhanced by 17% compared to the control. In a 10 l jar fermentor, lower dissolved oxygen tension was favorable for REA-11 production: a flocculating activity of 520 U/ml was achieved at a kappaLa of 100 h(-1). REA-11 raw product is relatively thermo-stable at acidic pH ranges of 3.0-6.5. Preliminary application studies showed that REA-11 had stronger flocculating activity to Kaolin clay suspension compared to chemical flocculants. In addition, the capability of decolorizing molasses wastewater indicates the industrial potential of this novel bioflocculant. 相似文献
15.
Fabritius D. Schäfer H.-J. Steinbüchel A. 《Applied microbiology and biotechnology》1998,49(5):573-578
On the basis of mutational analysis, the genes for phosphonate uptake and degradation in Escherichia coli were shown to be organized in a 10.9-kb operon of 14 genes (named phnC to phnP) and induced by phosphate (Pi) starvation [Metcalf and Wanner (1993) J Bacteriol 175: 3430–3442]. The repression of phosphonate utilization by Pi has hindered both the biochemical characterization of the carbon-phosphorus (C-P) lyase activity and the development of improved
methods for phosphonate biodegradation in biotechnology. We have cloned the genes phnG to phnP (associated with C-P lyase activity) with the lac promoter to provide expression of C-P lyase in the presence of Pi. A number of strains lacking portions of the phn operon have been constructed. In vivo complementation of the strains, in which phnC to phnP (including both Pn transport and catalysis genes) or phnH to phnP (including only catalysis genes) was deleted, with plasmids carrying various fragments of the phn operon revealed that the expression of phnC-phnP gene products is essential to restore growth on minimal medium with phosphonate as the sole phosphorus source, while phnG-phnM gene products are required for C-P lyase activity as assessed by in vivo methane production from methylphosphonic acid. The
minimum size of the DNA required for the whole-cell C-P lyase activity has been determined to be a 5.8-kb fragment, encompassing
the phnG to phnM genes. Therefore, there is no requirement for the phnCDE-encoded phosphonate transport system, suggesting that cleavage of the C-P bond may occur on the outer surface of the inner
membrane of E. coli cells, releasing the carbon moiety into the periplasm. These data are in agreement with the observation that phosphonates
cannot serve as the carbon source for E.␣coli growth.
Received: 23 September 1997 / Received revision: 5 January 1998 / Accepted: 24 January 1998 相似文献
16.
17.
During a screening procedure for the discovery of a strong gamma-decalactone producer from ricinoleic acid, we observed that the yeast Pichia guilliermondii accumulated transiently 8-hydroxy-3Z,5Z-tetradecadienoic acid 1 during gamma-decalactone biosynthesis in the stationary phase of growth. The structural elucidation of 1 was based on nuclear magnetic resonance, infrared, ultraviolet and gas chromatography-mass spectrometry experiments. The occurrence of 1 is discussed in relation with previously proposed gamma-decalactone biosynthetic pathways. 相似文献
18.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1980,617(3):545-547
9-Hydroxy-10,12-octadecadienoic acid and 13-hydroxy-9,11-octadeca-dienoic acid are formed from linoleic acid upon incubation with the microsomal fraction of homogenates of the sheep vesicular gland (Hamberg M. and Samuelsson B. (1967) J. Biol. Chem. bd242, 5344–5354. This communication is concerned with the stereochemical aspects of the conversion.The ratio between the 9- and 13-hydroxy isomers was 77:23. Steric analysis of the individual isomers showed that the hydroxyl group of both isomers had mainly the L configuration i.e. 9L:9D, 79:21 and 13L:13D, 78:22. Incubation of [11l-3H; 1-14C]linoleic acid led to the formation of 9- and 13-hydroxyoctadecadienoates which had largely lost the tritium label (6% and 7% retention of tritium relative to precursor, respectively) showing that the hydrogen which is removed from C-11 during the conversion has the l (pro-S) configuration. 相似文献
19.
20.
Goda M Hashimoto Y Shimizu S Kobayashi M 《The Journal of biological chemistry》2001,276(26):23480-23485
Isonitrile containing an N triple bond C triple bond was degraded by microorganism sp. N19-2, which was isolated from soil through a 2-month acclimatization culture in the presence of this compound. The isonitrile-degrading microorganism was identified as Pseudomonas putida. The microbial degradation was found to proceed through an enzymatic reaction, the isonitrile being hydrated to the corresponding N-substituted formamide. The enzyme, named isonitrile hydratase, was purified and characterized. The native enzyme had a molecular mass of about 59 kDa and consisted of two identical subunits. The enzyme stoichiometrically catalyzed the hydration of cyclohexyl isocyanide (an isonitrile) to N-cyclohexylformamide, but no formation of other compounds was detected. The apparent K(m) value for cyclohexyl isocyanide was 16.2 mm. Although the enzyme acted on various isonitriles, no nitriles or amides were accepted as substrates. 相似文献