首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA subunit of telomerase is encoded by Marek's disease virus   总被引:6,自引:0,他引:6       下载免费PDF全文
Marek's disease virus (MDV) is a herpesvirus of chickens that induces T lymphomas and tumors within 4 to 5 weeks of infection. Although the ability of MDV to induce tumors was demonstrated many years ago and although a number of viral oncogenic proteins have been identified, the mechanism by which the MDV is implicated in tumorigenesis is still unknown. We report the identification of a virus-encoded RNA telomerase subunit (vTR) within the genome of MDV. This gene is found in the genomic DNA of the oncogenic MDV strains, whereas it is not carried by the nononcogenic MDV strains. The vTR sequence exhibits 88% sequence identity with the chicken gene (cTR). Our functional analysis suggests that this telomerase RNA can reconstitute telomerase activity in a heterologous system (the knockout murine TR(-/-) cell line) by interacting with the telomerase protein component encoded by the host cell. We have also demonstrated that the vTR promoter region is efficient whatever the species of cell line considered and that vTR is expressed in vivo in peripheral blood leukocytes from chickens infected with the oncogenic MDV-RB1B and the vaccine MDV-Rispens strains. The functionality of the vTR gene and the potential implication of vTR in the oncogenesis induced by MDV is discussed.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Although vertebrate telomeres are highly conserved, telomere dynamics and telomerase profiles vary among species. The objective of the present study was to examine telomerase activity and telomere length profiles of transformed and non-transformed avian cells in vitro. Non-transformed chicken embryo fibroblasts (CEFs) showed little or no telomerase activity from the earliest passages through senescence. Unexpectedly, a single culture of particularly long-lived senescent CEFs showed telomerase activity after over 250 days in culture. Transformed avian lines (six chicken, two quail and one turkey) and tumor samples (two chicken) exhibited telomerase activity. Telomere length profiles of non-transformed CEF cultures derived from individual embryos of an inbred line (UCD 003) exhibited cycles of shortening and lengthening with a substantial net loss of telomeric DNA by senescence. The telomere length profiles of several transformed cell lines resembled telomere length profiles of senescent CEFs in that they exhibited little of the typical smear of terminal restriction fragments (TRFs) suggesting that these transformed cells may possess a reduced amount of telomeric DNA. These results show that avian telomerase activity profiles are consistent with the telomerase activity profiles of human primary and transformed cells. Further, monitoring of telomere lengths of primary cells provides evidence for a dynamic series of changes over the lifespan of any specific cell culture ultimately resulting in net telomeric DNA loss by senescence.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Telomere maintenance is an important genetic mechanism controlling cellular proliferation. Normally, telomeres are maintained by telomerase which is downregulated upon cellular differentiation in most somatic cell lineages. Telomerase activity is upregulated in immortalized cells and cancers to support an infinite lifespan and uncontrolled cell growth; however, some immortalized and transformed cells lack telomerase activity. Telomerase-negative tumors and immortalized cells utilize an alternative mechanism for maintaining telomeres termed alternative lengthening of telomeres (ALT). This research explored evidence for the ALT pathway in chicken cell lines by studying nontransformed immortalized cell lines (DF-1 and OU2) and comparing them to a normal (mortal) cell line and a transformed cell line (DT40). The research consisted of molecular and cellular analyses including profiling of telomeric DNA (array sizing and total content), telomerase activity, and expression of genes involved in the telomerase, recombination, and ALT pathways. In addition, an immunofluorescence analysis for an ALT marker, i.e. ALT-associated promyelocytic leukemia bodies (APBs), was conducted. Evidence for ALT was observed in the telomerase-negative immortalized cell lines. Additionally, the APB marker was also found in the other cell systems. The attributes of the chicken provide an additional vertebrate model for investigation of the ALT pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号