首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anesthetic-induced depression of the main phase-transition temperature of phospholipid membranes is often analyzed according to the van't Hoff model on the freezing point depression. In this procedure, zero interaction between anesthetics and solid-gel membranes is assumed. Nevertheless, anesthetics bind to solid-gel membranes to a significant degree. It is necessary to analyze the difference in the anesthetic binding between the liquid-crystal and solid-gel membranes to probe the anesthetic action on the lipid membranes. This article describes a theory to estimate the anesthetic binding to each state at the phase-transition temperature. The equations derived here reveal the relation between the partition coefficients of anesthetics and the anesthetic effects on the transition characters: the change in the transition temperature, and the broadening of transition. The theory revealed that the width of transition temperature is determined primarily by the membrane/buffer partition coefficients of anesthetics. Our previous data on the local anesthetic action on the transition temperature of the dipalmitoylphosphatidylcholine vesicle membrane (Ueda, I., Tashiro, C. and Arakawa, K. (1977) Anesthesiology 46, 327-332) are analyzed by this method. The numerical values for the partition of local anesthetics into the liquid-crystal and solid-gel dipalmitoyl-phosphatidylcholine vesicle membranes at the phase-transition temperature are: procaine 8.0 x 10(3) and 4.7 x 10(3), lidocaine, 3.7 x 10(3) and 2.3 x 10(3), bupivacaine 4.1 x 10(4), and 2.6 x 10(4), and tetracaine 7.3 x 10(4) and 4.7 x 10(4), respectively.  相似文献   

2.
A statistical mechanical theory is proposed which explains the molecular mechanism of the nonlinear response of the phase-transition temperature of phospholipid vesicle membranes to added 1-alkanols. By assuming that the free energy of transfer of 1-alkanols from the aqueous phase to the membrane and the interaction energy between 1-alkanol molecules are linear functions of alkanol alkyl chain-length, the nonlinear behavior is explained in the Bragg-Williams approximation. For dipalmitoylphosphatidylcholine vesicle membranes, the theory reveals a larger free energy of transfer of 1-alkanols from the aqueous phase to the solid-gel membrane than to the liquid-crystalline membrane when the number of carbon atoms of 1-alkanol exceeds 12. When the intermolecular interaction force between 1-alkanol molecules residing in the gel phase is stronger than the interaction force between those residing in the liquid-crystalline phase, the ligand effect is to tighten the lipid matrix structure, causing the transition temperature to rise. The interaction force is a quadratic function of 1-alkanol concentration; hence, the response of the transition temperature to the 1-alkanol concentration is nonlinear. At low concentrations of the long-chain 1-alkanols that predominantly elevate the transition temperature, this intermolecular interaction force is negligible. In this case, the entropic effect of the incorporated ligand molecules, which loosens the lipid matrix, predominates, and the transition temperature decreases. The biphasic action of long-chain 1-alkanols originates from the balance of these two opposing effects: entropy and intermolecular interaction.  相似文献   

3.
We have compared ligand effects between polar and apolar anesthetic molecules upon water transport across phospholipid membranes by kinetic analysis of the osmotic swelling rate, using a stopped-flow technique. Chloroform and 1-hexanol were used as interfacial ligands, and carbon tetrachloride and n-hexane were used as their counterparts, representing lipid core action. Because anesthetics transform the solid-gel membrane into a liquid-crystalline state, and because phospholipid membranes display an anomaly in permeability at the phase transition, dimyristoylphosphatidylcholine vesicles were studied at temperatures above the main phase transition to avoid this anomaly. All these molecules increased the osmotic swelling rate. However, a significant difference was observed in the activation energy, delta Ep, between polar and apolar molecules; delta Ep was almost unaltered by the addition of polar molecules (chloroform and 1-hexanol), whereas it was decreased by apolar molecules (carbon tetrachloride and n-hexane). The obtained results were analyzed in terms of the dissolution-diffusion mechanism for water permeation across the lipid membrane. It is suggested that polar molecules affect water permeability by altering the partition of water between the membrane interior and water phase, and apolar molecules affect it by altering both the partition and the diffusion of water within the membrane interior.  相似文献   

4.
The membrane-buffer partition coefficient of tetracaine was measured by direct ultraviolet spectrophotometry in dimyristoylphosphatidylcholine unilamellar liposomes at temperatures above and below the main phase transition. The partition coefficients of uncharged tetracaine to solid-gel (18 degrees C) and liquid-crystal (30 degrees C) membranes were 6.9 x 10(4) and 1.2 x 10(5), respectively. Despite the general assumption that local anesthetic binding to the solid membrane is negligible, this study showed that the solid membrane binding amounts to 57.5% of the liquid membrane binding. Binding of the charged form to the liquid or solid membrane was not detectable under the present experimental condition of 0.03 mM tetracaine bulk concentration. The present method measures metachromasia of local anesthetics when bound to lipid membranes. Its advantage is that the separation of the vesicles from the solution is not required. A linearized equation is presented that estimates the partition coefficient or binding constant graphically from a linear plot of the absorbance data. The method is applicable for estimation of drug partition when a measurable spectral change occurs due to complex formation.  相似文献   

5.
The molar partition coefficients of amphiphilic additives, e.g. local anesthetics, between the aqueous phase, the liquid crystal and the gel phase of lipid membrane can be determined based on a combination of phase transition data obtained at high and low concentrations of the lipid in aqueous phase. The data obtained at high lipid concentration allow to find the phase diagram lipid-additive in the aqueous environment. The combination of this diagram with data obtained at low lipid and additive concentrations provides direct information on the concentration of anesthetics in the lipid and thus allows the calculation of the partition coefficient.  相似文献   

6.
Cationic local anesthetics decreased the transition temperature of the anionic phospholipid (dimyristoylphosphatidic acid, DMPA) vesicles. The counterion concentration changes the electrical double layer effect, and affects the magnitude of temperature depression caused by anesthetics. From the counterion effect on the transition-temperature depression, the partition coefficients of cationic local anesthetics to liquid-crystalline and solid-gel DMPA membranes were separately estimated. The differences in the partition coefficients between solid-gel and liquid-crystalline membranes correlated to the nerve blocking potencies. There are at least two states in the nerve membranes: resting state at higher temperature and excited state at lower temperature. We speculate that the resting state corresponds to the liquid-crystalline state, and the excited state to the solid-gel state. The difference in the partition coefficients to the resting and excited states is the cause of local anesthesia.  相似文献   

7.
The phase transition kinetics and mechanism of formation of a lamellar-crystalline phase of dipalmitoylphosphatidylethanolamine (DPPE) dispersed in different concentrations of aqueous dimethyl sulfoxide (DMSO) during cooling have been examined by differential scanning calorimetry and synchrotron X-ray diffraction techniques. In dispersions containing mole fractions of DMSO (x<0.22), the phase transition sequence of the phospholipid is from lamellar liquid-crystal phase to lamellar-gel phase. Increasing the mole fraction of DMSO to 0.220.5 resulted in a direct transition from liquid-crystal phase to lamellar crystal phase with no detectable intermediate gel phase. A temperature versus DMSO concentration phase diagram was constructed based on calorimetric data with phase assignments made using synchrotron X-ray diffraction measurements. The non-isothermal formation kinetics of the lamellar crystal phase, which is expressed as the half time of the transformation process, was found to depend on DMSO concentration. The inducement of lamellar crystal phase in DPPE by DMSO is discussed in terms of the dehydration effect of DMSO and competitive molecular interactions between DMSO, water, and the phospholipid.  相似文献   

8.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesethetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

9.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesthetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

10.
The effect of alpha-tocopherol on the thermotropic phase behaviour and structure of aqueous dispersions of 1,2-di-lauryl-sn-glycero-3-phosphoethanolamine was examined by synchrotron X-ray diffraction. The pure phospholipid exhibited a lamellar gel to liquid-crystal phase transition at 30 degrees C on heating at 3 degrees C min(-1) between 10 degrees C and 90 degrees C. The transition was reversible with a temperature hysteresis of 0.3 degrees C on cooling. At temperatures less than 10 degrees C only lamellar gel phase of the pure phospholipid was seen in co-dispersions of up to 20 mol % alpha-tocopherol. The presence of 2.5 mol % alpha-tocopherol caused the appearance of inverted hexagonal phase at temperatures just below the main phase transition temperature that co-existed with the lamellar gel phase. The intensity of scattering from the hexagonal-II phase increased with increasing proportion of alpha-tocopherol in the mixture and in proportions greater than 10 mol % it persisted at temperatures above the main transition and co-existed with the lamellar liquid-crystal phase of the pure phospholipid. At higher temperatures all co-dispersions containing up to 15 mol % alpha-tocopherol showed the presence of cubic phases. These phases indexed a Pn3m or Pn3 space grouping. When the proportion of alpha-tocopherol was increased to 20 mol % the only non-lamellar phase observed was inverted hexagonal phase. This phase co-existed with lamellar gel and liquid-crystal phases of the pure phospholipid, but was the only phase present at temperatures >60 degrees C. The X-ray diffraction data were used to construct a partial phase diagram of the lipid mixture in excess water between 10 degrees and 90 degrees C and up to 20 mol % alpha-tocopherol in phospholipid.  相似文献   

11.
The electrical capacity of planar bilayer lipid membranes (BLM) from natural hydrogenated egg lecithin (HEL) in n-decane at a temperature of phase transition was measured. The temperature of phase transition was determined calorimetrically to be 51 degrees C. The data obtained revealed a phase separation of HEL in BLM into two fractions, one freezing at 42-44 degrees C and one that is converted to a liquid-crystal state at 51-59 degrees C. It was assumed that the first fraction is rich in dipalmitoyl lecithin, and the second fraction is rich in distearoyl lecithin. Freezing and the transition to the liquid-crystal state were accompanied by an increase and decrease in membrane thickness, respectively, in part due to a displacement of the solvent from the torus to the planar part of the bilayer. The displacement of the solvent is explained by changes in the disjoining pressure in BLM, which arises across the lipid bilayer due to van der Waals forces of attraction between water layers on both sides of the BLM.  相似文献   

12.
The main phase transition temperature, Tm, of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was measured in the presence of the cationic surfactants tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium bromide. Variation of the perturbing effect of these surfactants on Tm with the lipid concentration was analyzed according to the theory recently proposed by Kaminoh et al. (Y. Kaminoh, C. Tashiro, H. Kamaya and I. Ueda (1988) Biochim. Biophys. Acta 946, 215-220), and the partition coefficients of the surfactant into solid-gel and liquid-crystalline membranes were estimated.  相似文献   

13.
The gel-to-liquid-crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was observed in the presence of various types of surfactants; sodium alkylsulfates, alkyltrimethylammonium bromides, alkanoyl-N-methylglucamides, and hexaethyleneglycol mono n-dodecyl ether. The phase transition was monitored by a change in scattered light intensity of the lipid suspension. For all the surfactants examined, the phase transition temperature was depressed linearly with the surfactant concentration in the measured concentration range, from which the partition coefficient, K, of the surfactant between bulk solution and lipid membrane was estimated. Except alkyltrimethylammonium bromides, log K and log CMC showed a linear relationship, which indicates that the driving force to transfer the surfactant from bulk solution to lipid membrane is a hydrophobic interaction. The addition of surfactants increased the transition width. The extent of widening the transition width was in the order of sodium alkylsulfate greater than alkyltrimethylammonium bromides greater than hexaethyleneglycol mono n-dodecyl ether; in the case of alkanoyl-N-methylglucamides, the transition width was not affected by the addition. These effects on the transition width was interpreted qualitatively in terms of the cooperativity of the transition.  相似文献   

14.
The interactions of carbon-13 enriched butanol with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied using C-13 nuclear magnetic resonance. It was found that above the gel to liquid crystal phase transition the resonance from the butanol could be resolved into two signals with similar chemical shifts but different T1 values and line widths. In contrast, only one narrow resonance was observed for ethanol, which has considerably less solubility in the lipids than butanol. Thermodynamic analyses of the effects of butanol on the phase transition temperature predict much greater solubility or butanol when the lipid is above the phase transition temperature than when it is below. It was concluded that the two butanol resonances represent two slowly exchanging populations, the free butanol in the aqueous phase and butanol dissolved in the liquid crystalline region of the lipid. No bound butanol was detected below the gel to liquid crystal phase transition. Relaxation studies were performed on the resonance of the bound butanol in DPPC and DMPC, including measurements of T1, line width, and nuclear Overhauser enhancement. Theoretical analysis of the relaxation parameters indicates that the lipid-bound alcohol has very high mobility within the fluid lipid bilayer. The data are consistent with butanol being present at the aqueous boundary or head group region of the lipid.  相似文献   

15.
Interactions of the local anesthetic tetracaine with unilamellar vesicles made of dimyristoyl or dipalmitoyl phosphatidylcholine (DMPC or DPPC), the latter without or with cholesterol, were examined by following changes in the drug's fluorescent properties. Tetracaine's location within the membrane (as indicated by the equivalent dielectric constant around the aromatic fluorophore), its membrane:buffer partition coefficients for protonated and base forms, and its apparent pK(a) when adsorbed to the membrane were determined by measuring, respectively, the saturating blue shifts of fluorescence emission at high lipid:tetracaine, the corresponding increases in fluorescence intensity at this lower wavelength with increasing lipid, and the dependence of fluorescence intensity of membrane-bound tetracaine (TTC) on solution pH. Results show that partition coefficients were greater for liquid-crystalline than solid-gel phase membranes, whether the phase was set by temperature or lipid composition, and were decreased by cholesterol; neutral TTC partitioned into membranes more strongly than the protonated species (TTCH(+)). Tetracaine's location in the membrane placed the drug's tertiary amine near the phosphate of the headgroup, its ester bond in the region of the lipids' ester bonds, and associated dipole field and the aromatic moiety near fatty acyl carbons 2-5; importantly, this location was unaffected by cholesterol and was the same for neutral and protonated tetracaine, showing that the dipole-dipole and hydrophobic interactions are the critical determinants of tetracaine's location. Tetracaine's effective pK(a) was reduced by 0.3-0.4 pH units from the solution pK(a) upon adsorption to these neutral bilayers, regardless of physical state or composition. We propose that the partitioning of tetracaine into solid-gel membranes is determined primarily by its steric accommodation between lipids, whereas in the liquid-crystalline membrane, in which the distance between lipid molecules is larger and steric hindrance is less important, hydrophobic and ionic interactions between tetracaine and lipid molecules predominate.  相似文献   

16.
The phase behavior of dioleoylphosphatidylethanolamine in aqueous solutions of urea, N,N'-dimethylurea (DMU), and N,N,N',N'-tetramethylurea (TMU) has been characterized by synchrotron X-ray diffraction and differential scanning calorimetry. All three solutes stabilize the lamellar liquid-crystalline phase at the expense of lamellar-gel phase and inverted hexagonal phase of the phospholipid when present in concentrations up to 3 M. X-ray diffraction data demonstrated that the repeat spacing of DOPE increased with increasing urea concentration, but decreased as the DMU and TMU concentrations increased. The repeat spacing of DOPE in the liquid-crystal phase dispersed in the three solutes is d(urea)>d(DMU)>d(TMU). The molecular mechanisms underlying these observations are discussed in terms of either membrane Hofmeister effect, where urea acts as a water structure breaker, or a direct insertion effect of the amphiphilic DMU and TMU molecules into the lipid head groups in the interfacial region of the phospholipid bilayer.  相似文献   

17.
The effect of membrane-fluidizing agents on the adhesion of CHO cells   总被引:3,自引:0,他引:3  
Treatment of CHO cells with drugs which are known to increase membrane lipid fluidity reduced the cells' ability to adhere to protein coated substrates, The concentrations of local anesthetics, nonionic detergents or aliphatic alcohols required to reduce CHO cell adhesion by 50% were similar to those reported to block nerve conduction, indicating that these drugs can affect the membrane at physiologically significant concentrations. Nonionic detergents and aliphatic alcohols, but not local anesthetics, caused increases in the fluidity of CHO plasma membranes (measured by fluorescence polarization) at concentrations which inhibited cell adhesion. The adhesion versus temperature profile had a sigmoidal shape, suggesting that a temperature dependent cooperative process such as a lipid phase transition, might be involved. However, the temperature profile for CHO membrane fluidity manifested no discontinuities, indicating the absence of any discrete phase transitions of the lipid matrix. This observation, coupled with the result that the inhibition of CHO cell adhesion produced by low temperatures was not relieved by drugs which can increase membrane fluidity, suggests that the reduced adhesion seen at low temperature is probably not due to reduced lipid fluidity.  相似文献   

18.
Small unilamellar lipid bilayer vesicles were prepared from brain phosphatidylserine, egg phosphatidylcholine, and synthetic dipalmitoylphosphatidylcholine, and were fused into larger structures by freezing and thawing, addition of calcium chloride, and passage through the lipid phase transition temperature. Fusion reactions were studied by electron microscopy, light scattering, and use of fluorescent probes. Fusion was accompanied by leakage of lipid vesicle constituents and of water-soluble solutes in the inner vesicle compartments, and by uptake of these types of components from the external solution. Such leakage was greater during fusion by freezing than by Ca2+. Passage through the transition temperature produced a moderate degree of fusion, without loss of membrane components. It is concluded that each fusion method gives rise to a characteristic size or narrow range of sizes of fusion products. The fraction of small vesicles fused into larger structure depends on the method of vesicle preparation, composition of the lipid bilayer, and composition of the external solution. Fusion is induced by creation of a discontinuity in the bilayer or by removal of water associated with the bilayer. The amount of water removed controls the extent of fusion. This is maximized in bilayers when in the liquid-crystal phase, as against the gel phase, in vesicles made by ethanol injection, as against sonication, and in charged bilayers, as against neutral ones.  相似文献   

19.
The addition of local anesthetics procaine and 2-phenylethanol during cell growth and membrane isolation lowered the phase transition temperature of purified outer membranes of Escherichiacoli. Furthermore, when added to growth media, these anesthetics lowered to an equal extent the maximum temperature of growth without affecting growth at low temperatures. The phase transition of the cytoplasmic membrane was not affected by the presence of the drugs. These data substantiate the hypothesis that the temperature range over which the cell can maintain the outer membrane in a mixed (gel + liquid crystalline) lipid state determines the temperature range over which growth can occur.  相似文献   

20.
R M Epand  M Bryszewska 《Biochemistry》1988,27(24):8776-8779
Several salts affect the temperature of the bilayer to hexagonal phase transition of phosphatidylethanolamines. Their effects are dependent on the anion as well as the cation of the salt. Salt effects on this transition can be explained by preferential hydration and ion binding. Those salts which are excluded from the solvation sphere of the membrane promote hexagonal phase formation. For example, Na2SO4 promotes preferential hydration and is a hexagonal phase promoter while NaSCN does not do this and is a bilayer stabilizer. Unlike amphiphiles and hydrocarbons, salts can shift the bilayer to hexagonal phase transition temperature without altering the cooperativity of the transition. The effect of these salts on the gel to liquid-crystal transition is opposite to their effect on the bilayer to hexagonal phase transition. We also find that MnCl2 markedly raises the gel to liquid-crystal transition temperature. This effect is due to binding of the cation to the membrane surface. The effect is reduced with MnSO4 because of preferential hydration. Our results demonstrate that the nature of the anion as well as the cation can alter the effect of salts on lipid phase transition properties. The observed effects can be explained as resulting from preferential hydration and ion binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号