首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloned cDNA probes were used to measure the accumulation of myosin heavy chain, myosin light chain 2, and actin mRNA during differentiation of rat skeletal muscle cell cultures. This was compared with the changes in the rate of synthesis of the corresponding proteins. Accumulation of those mRNA sequences was detectable a few hours before the onset of the phase of cell fusion; however, the main increase in hybridizable RNA occurred during the phase of rapid cell fusion. A close correlation was found between the amounts of mRNAs coding for these proteins and the rate of synthesis of the proteins. The results suggest that the activation of stored mRNA is not a major mechanism for controlling the time at which these proteins are synthesized.  相似文献   

2.
3.
4.
Summary We have found evidence for two beta-like myosin heavy chains in humans, one cardiac and one skeletal. The cDNA sequences of the cardiac beta myosin heavy chain cDNA clone pHMC3 and the skeletal beta-like myosin heavy chain cDNA clone pSMHCZ, were compared to each other. It was found that the 3 untranslated regions as well as 482 nucleotides specifying the carboxyl coding region, were 100% homologous. Further examination revealed that the skeletal clone pSMHCZ diverges from the human cardiac beta myosin heavy chain cDNA clone pHMC3 at the 5 end. We present evidence in this report which indicates that the cardiac beta myosin heavy chain mRNA is expressed in skeletal muscle tissues. The human cardiac beta myosin heavy chain cDNA clone, pHMC3, which codes for a portion of the light meromyosin section of the myosin heavy chain, was used as a probe for S1 nuclease mapping studies with RNA derived from cardiac tissue, smooth muscle and skeletal muscle tissues consisting of fast-twitch, slow-twitch and mixed fast- and slow-twitch muscle fibres. Two probes were used to examine the expression of the mRNA. One probe (406 nucleotides) constitutes the 3 untranslated region and a portion of the coding region of the beta cardiac myosin heavy chain cDNA clone, which is 100% homologous to pSMHCZ, the skeletal cDNA clone. The other constitutes the majority of the coding region (1017 nucleotides) of the cardiac clone pHMC3 in which the first 216 nucleotides from the labelled end are 100% homologous to the skeletal clone pSMHCZ. In the soleus muscle, which is rich in slow-twitch type I muscle fibres, the expression of the cardiac beta myosin heavy chain mRNA was very prominent. In gastrocnemius muscle, a mixed fibre muscle, the expression of this mRNA was detected to a lesser degree than that for the soleus muscle. In vastus lateralis and vastus medialis, which consist of predominantly type II, fast-twitch fibres, there were trace amounts of the cardiac beta myosin heavy chain mRNA. When expression of this mRNA was tested in smooth muscle tissue none could be detected.  相似文献   

5.
The relative rates of synthesis and breakdown of myosin heavy and light chains were studied in primary cell cultures of embryonic chick cardiac and skeletal muscle. Measurements were made after 4 days in culture, at which time both skeletal and cardiac cultures were differentiated and contracted spontaneously. Following a 4-hr pulse of radioactive leucine, myosin and its heavy and light chains were extracted to 90% or greater purity and the specific activities of the proteins were determined. In cardiac muscle, myosin heavy chains were synthesized approximately 1.6 times the rate of myosin light chains, and in skeletal muscle, heavy chains were synthesized at approximately 1.4 times the rate of light chains. Relative rates of degradation of muscle proteins were determined using a dual-isotope technique. In general, the soluble and myofibrillar proteins of both types of muscle had decay rates proportional to their molecular weights (larger proteins generally had higher decay rates) based on analyses utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A notable exception to this general rule was myosin heavy chains, which had decay rates only slightly higher than the myosin light chains. Direct measurements on purified proteins indicated that the heavy chains of myosin were turning over at a slightly greater rate (approximately 20%) than the myosin light chains in both cardiac and skeletal muscle. The reasons for the apparent discrepancy between these measurements of myosin heavy and light chain synthesis and degradation are discussed.  相似文献   

6.
Summary Single muscle fibres were isolated by microdissection from freeze-dried samples of rabbit psoas and soleus muscles. The individual fibres were typed according to qualitative histochemical reactions for succinate dehydrogenase or NADH-tetrazolium reductase and for alkaline Ca2+-activated myofibrillar myosin ATPase after acid or alkaline preincubation. Methods are described for electrophoretic analysis by means of polyacrylamide disc electrophoresis in the presence of SDS of total myofibrillar proteins in single fibres after pre-extraction of soluble proteins. Fast-twitch white fibres revealed a myosin light chain pattern characteristic of fast-type myosin with three light chains of apparent molecular weights of 22,300 (LC1), 18,400 (LC2) and 16,000 (LC3). Fast-twitch red fibres were indistinguishable in this respect from fast-twitch white fibres and showed an identical pattern of myosin light chains. Slow-twitch fibres could be characterized by a myosin light chain pattern typical of myosin of slow-twitch muscles with peptides of the apparent molecular weights of 23,500 (LC1Sa), 23,000 (LC1Sb) and 18,500 (LS2S). Slow-twitch fibres isolated from soleus as well as from psoas muscle were indistinguishable with regard to their myosin light chain patterns, thus suggesting that fibres of the same histochemical type correspond in their myosin light chain patterns irrespective of their origin from different muscles.Dedicated to the memory of Ernest Gutmann who has contributed so much to our knowledge on differentiation of muscle and who died on August 6, 1977  相似文献   

7.
We have selected tropomyosin subunits and myosin light chains as representative markers of the myofibrillar proteins of the thin and thick filaments and have studied changes in the type of proteins present during development in chicken and rabbit striated muscles. The β subunit of tropomyosin is the major species found in all embryonic skeletal muscles studied. During development the proportion of the α subunit of tropomyosin gradually increases so that in adult skeletal muscles the α subunit is either the only or the major species present. In contrast, cardiac muscles of both chicken and rabbit contain only the α subunit which remains invariant with development. Two subspecies of the α subunit of tropomyosin which differ in charge only were found in adult and embryonic chicken skeletal muscles. Only one of these subspecies seems to be common to chicken cardiac tropomyosin. With respect to myosin light chains, embryonic skeletal fast muscle myosin of both species resembles the adult fast muscle myosin except that the LC3 light chain characteristic of the adult skeletal fast muscle is present in smaller amounts. The significance of these isozymic changes in the two myofibrillar proteins is discussed in terms of a model of differential gene expression during development of chicken and rabbit skeletal muscles.  相似文献   

8.
Whereas dissociation of rabbit skeletal muscle myosin light chains occurs at an increased temperature (25°) and in the obsence of divalent cations, reassociation of the myosin oligomer requires a low temperature (4°C) and the presence of divalent cations, thus resulting in the original light to heavy chain stoichiometry. With a 5–10 per cent release of alkali light chains, LC1 and LC3, and a 50 per cent dissociation of the Ca2+ binding light chain, LC2, there is no significant decrease in myosin ATPase activity irrespective of the cation activator, however, there is an approximate 15–20 per cent decrease in actomyosin ATPase activity. With reassociation of the myosin oligomer, actomyosin ATPase activity is partially restored as well as the original number of Ca2+ binding sites.  相似文献   

9.
10.
11.
The messenger RNA (mRNA) coding for myosin heavy chain from the 16-day-old chick embryonic cardiac tissue was purified by a rapid isolation procedure and characterized. The mRNA can be translated with fidelity under optimally chosen conditions. The protein synthesized in response to the RNA was a polypeptide of 200,000 molecular weight, identical to the authentic myosin heavy chain from the homologous chick heart tissue. The purity of the mRNA was assessed by electrophoresis in denaturing gels, by immunoprecipitation of the translation product, and by analysis of the kinetics of hybridization with the complementary DNA (cDNA). The cDNA reassociated with myosin heavy-chain mRNA with kinetics characteristic of a pure mRNA. The sequence complexity data indicated that in the 16-day-old chick embryonic heart cells there is a single mRNA sequence coding for myosin heavy chain in contrast to two different mRNA sequences reportedly present in the skeletal muscle cells (M. Patrinou-Georgoulas and H. A. John, 1977, Cell12, 491).  相似文献   

12.
Cheema IR  Hermann C  Postell S  Barnes P 《Cytobios》2000,103(404):169-176
The effect of chronic tumour necrosis factor-alpha (TNF-alpha) treatment on the synthesis of specific myofibrillar proteins such as heavy chain myosin, light chain myosin and G-actin in rat diaphragm were evaluated. Muscles (diaphragm) from control and experimental groups (TNF-alpha i.v. at 50 microg/kg body wt for 5 days) were incubated in the presence of 35S-methionine for 2 h. Myofibrillar protein extracts were prepared and protein was electrophoresed on sodium dodecyl sulphate-polyacrylamide gels. Heavy chain myosin, light chain myosin and G-actin were identified by Western blot analysis using specific monoclonal antibodies. Polyacrylamide gel electrophoresis (PAGE) followed by Western blot analysis revealed two types of heavy chain myosin (206 and 212 kD), all four types of light chain myosin (15, 16.5, 18 and 20 kD) and a single type of G-actin (42 kD). Chronic TNF-alpha treatment produced a significant decline in the synthesis of all types of myofibrillar proteins, namely heavy chain myosin, light chain myosin and G-actin. TNF-alpha impaired peptide-chain initiation in diaphragm muscle which was reversed by the branched-chain amino acids (BCAA) therapy of TNF-alpha treated rats. These findings indicate a significant role for TNF-alpha in the translational regulation of protein synthesis in skeletal muscle.  相似文献   

13.
14.
A recombinant DNA plasmid, pMHC8, that contains gene sequences for embryonic chick cardiac myosin heavy chain was constructed, identified and characterized. The identity of the clone was established by hybridization with labeled probes that afford screening of MHC22 with high specificity, by inhibition of MHC synthesis in the in vitro hybrid-arrested translation assay, and by tissue-specific hybridization of labeled pMHC8 DNA to MHC messenger RNA.The pMHC8 DNA probe is highly specific for chick heart muscle tissue, since it hybridized poorly to chick skeletal muscle RNA and did not detectably hybridize to adult rat heart RNA. Upon screening the embryonic chick heart cells in culture, no detectable level of MHC mRNA was observed in dividing myoblasts, but the mRNA appeared in differentiated cardiac myocytes paralleling morphogenetic changes in the embryonic cells.  相似文献   

15.
Polyacrylamide gel electrophoresis (PAGE) of native proteins shows that myosin subfragment-1 (S-1), prepared by α-chymotryptic digestion of myosin, can be separated into two well-spaced bands corresponding to two S-1 isozymes. One of these consists of a heavy chain fragment (HC) and light chain (LC1); the other to HC and light chain 3 (LC3). Addition of light chain 2 (LC2), lost during the digestion process, speeds up the migration of the LC1-bearing S-1 (HC · LC1) but leaves the LC3-bearing S-1 (HC · LC3) essentially unehanged. This suggests that LC2 has a stronger affinity for the former and forms with it the complex. HC · LC1 · LC2. 5,5′-Dithiobis-(2-nitrobenzoic acid) (DTNB) treatment of myosin is known to remove only about half of the LC2 (“DTNB light chain”). Although S-1 prepared from such myosin cannot be well-resolved by DEAE-cellulose chromatography into two peaks, the beginning of the peak is largely HC · LC1 · LC2 and the ending is largely HC · LC3, as revealed by sodium dodecyl sulfate (SDS)-PAGE. Thus, the loss of LC2 during DTNB treatment is mainly from S-1 bearing LC3.  相似文献   

16.
In this study, myosin, the major component of myofibrillar protein in the skeletal muscle, was characterized and its expression was monitored during growth in juvenile walleye Sander vitreus. First, the coding region of myosin heavy chain (MyHC) from the fast skeletal muscle of walleye was amplified by long-distance PCR using a full-length cDNA. Phylogenetic analysis was used to determine the evolutionary relationship of this S. vitreus myosin sequence to other vertebrate myosin sequences. Next, it was established that the myosin isoform was most prevalent in the white muscle, compared with the red and cardiac muscle. Myosin expression was monitored over a series of experiments designed to influence growth. Specifically, change in MyHC mRNA was monitored after acute changes in feeding. Fish exposed to a one-week fasting period showed significant decreases in MyHC mRNA levels by the end of the fast. The effect of feeding was also examined more closely over a 24 h period after feeding, but results showed no significant change in myosin expression levels through this time period. Finally, fish with higher growth rates had higher MyHC mRNA and protein expression levels. This study indicates that MyHC mRNA expression is sensitive to the factors that may influence growth in juvenile S. vitreus .  相似文献   

17.
Diazepam (Valium/Roche) causes an immediate cessation of spontaneous contraction in chick embryo skeletal muscle fibers growing in vitro. Between 24–48 h later in the presence of 100 μM diazepam the relaxed muscle fibers no longer accumulate myosin as measured by the total amount of myosin heavy-chain peptide extracted from the cell cultures and identified by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The myosin heavy chain assay procedure was standardized by quantitative precipitation of myosin with antibody to column purified chicken skeletal muscle myosin. Failure to accumulate myosin is related to a progressive inhibition of myosin synthesis. Diazepam-treated cultures showed an 80% inhibition of myosin heavy-chain synthesis over a period of 4 days. At the same time the rate of myosin heavy-chain degradation increases in diazepam-treated cultures relative to matched control cultures. Total protein synthesis was only marginally affected suggesting that diazepam may differentially inhibit myofibrillar protein synthesis. All of the observed effects of diazepam were reversible if drug exposure was limited to 48 h. The apparent specificity and reversibility of diazepam suggests that the drug will be useful in probing the mechanisms of terminal skeletal muscle cell differentiation and the hypotrophic relationship between chronic relaxation and inhibition of accumulation of myosin and perhaps other myofibrillar proteins.  相似文献   

18.
19.
The superfast swimbladder muscle of Opsanus tau differs from the corresponding fast skeletal muscle not only by its well known much more developed sarcoplasmic reticulum but also by its two- to threefold higher parvalbumin contact and a genuine LC2 myosin light chain.  相似文献   

20.
Summary Cod (Gadus morhua) of 50 g body weight were kept at 14°C. The fish were fed ad libitum during 80 days a diet containing protein levels which in terms of total energy corresponded to 25%, 45% or 65%. Growth increased in accordance with protein-energy levels. The protein content per gram of wet weight of white trunk muscle was unchanged, as was the myofibrillar protein myosin heavy chain determined by the antigen-antibody reaction of the enzyme-linked immunosorbent assay. The amount of messenger ribonucleic acid (mRNA) coding for myosin heavy chain was lower at 25% than at 45% or 65% protein-energy intake, the differences being significant per gram of wet weight of muscle. Acid proteinase activity was highest at the lowest protein-energy intake. Glycogen content in muscle increased with the protein-energy levels. It is concluded that the metabolic response of white trunk muscle to graded protein-energy intake included a change in the capacity to synthesize myosin heavy chain as judged by its mRNA content. The protein content per gram of wet weight was unaffected by dietary protein-energy levels of 25%, 45% and 65%, but protein accretion and thus growth of the animals increased with the protein intake. Dietary protein-energy restriction caused a rise in acid proteinase activity and a decrease in content of mRNA for myosin heavy chain, resulting in a diminished growth rate at an unchanged protein content per gram of wet weight of muscle.Abbreviations CTP cytidine triphosphate - DNA desoxyribonucleic acid - EDTA ethylenediaminetetra-acetic acid - mRNA messenger ribonucleic acid - TRIS tris(hydroxymethyl)aminomethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号