首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Szenes A  Pál G 《DNA research》2012,19(3):245-258
The recently published discrete mathematical method, extended consensus partition (ECP), identifies nucleotide types at each position that are strictly absent from a given sequence set, while occur in other sets. These are defined as discriminating elements (DEs). In this study using the ECP approach, we mapped potential hidden identity elements that discriminate the 20 different tRNA identities. We filtered the tDNA data set for the obligatory presence of well-established tRNA features, and then separately for each identity set, the presence of already experimentally identified strictly present identity elements. The analysis was performed on the three kingdoms of life. We determined the number of DE, e.g. the number of sets discriminated by the given position, for each tRNA position of each tRNA identity set. Then, from the positional DE numbers obtained from the 380 pairwise comparisons of the 20 identity sets, we calculated the average excluding value (AEV) for each tRNA position. The AEV provides a measure on the overall discriminating power of each position. Using a statistical analysis, we show that positional AEVs correlate with the number of already identified identity elements. Positions having high AEV but lacking published identity elements predict hitherto undiscovered tRNA identity elements.  相似文献   

2.
An improved algorithm was elaborated to analyse tRNA interaction with aminoacyl-tRNA synthetase based on analysis of tRNA sequences. The fundamental element defining the interaction between the tRNA and the synthetase is not a single nucleotide but a nucleotide combination named a tile which comprises of a given nucleotide and its neighbours as they are defined by the tertiary structure of the molecule. Informational content of each tile is calculated as its probability to occur exclusively in a set of cognate tRNAs. Based on this algorithm the identity sites of E. coli tRNA(Ala) and tRNA(Gln) were determined. The results are in a good agreement with the biochemical data and provide new information about identity sites of these tRNAs.  相似文献   

3.
4.
tRNA identity elements determine the correct aminoacylation by the cognate aminoacyl-tRNA synthetase. In class II aminoacyl tRNA synthetase systems, tRNA specificity is assured by rather few and simple recognition elements, mostly located in the acceptor stem of the tRNA. Here we present the crystal structure of an Escherichia coli tRNA(Gly) aminoacyl stem microhelix at 2.0 A resolution. The tRNA(Gly) microhelix crystallizes in the space group P3(2)21 with the cell constants a=b=35.35 A, c=130.82 A, gamma=120 degrees . The helical parameters, solvent molecules and a potential magnesium binding site are discussed.  相似文献   

5.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem. The tRNA(Gly)/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNA(Gly) acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNA(Gly) aminoacyl stem from Thermus thermophilus at 1.6? resolution and provide insight into the RNA geometry and hydration.  相似文献   

6.
7.
Embedded in the sequence of each transfer RNA are elements that promote specific interactions with its cognate aminoacyl tRNA-synthetase. Although many such “identity elements” are known, their detection is difficult since they rely on unique structural signatures and the combinatorial action of multiple elements spread throughout the tRNA molecule. Since the anticodon is often a major identity determinant itself, it is possible to switch between certain tRNA functional types by means of anticodon substitutions. This has been shown to have occurred during the evolution of some genomes; however, the scale and relevance of “anticodon shifts” to the evolution of the tRNA multigene family is unclear. Using a synteny-conservation–based method, we detected tRNA anticodon shifts in groups of closely related species: five primates, 12 Drosophila, six nematodes, 11 Saccharomycetes, and 61 Enterobacteriaceae. We found a total of 75 anticodon shifts: 31 involving switches of identity (alloacceptor shifts) and 44 between isoacceptors that code for the same amino acid (isoacceptor shifts). The relative numbers of shifts in each taxa suggest that tRNA gene redundancy is likely the driving factor, with greater constraint on changes of identity. Sites that frequently covary with alloacceptor shifts are located at the extreme ends of the molecule, in common with most known identity determinants. Isoacceptor shifts are associated with changes in the midsections of the tRNA sequence. However, the mutation patterns of anticodon shifts involving the same identities are often dissimilar, suggesting that alternate sets of mutation may achieve the same functional compensation.  相似文献   

8.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

9.
Aminoacyl-tRNA synthetases catalyze the formation of aminoacyl-tRNAs. Seryl-tRNA synthetase is a class II synthetase, which depends on rather few and simple identity elements in tRNA(Ser) to determine the amino acid specificity. tRNA(Ser) acceptor stem microhelices can be aminoacylated with serine, which makes this part of the tRNA a valuable tool for investigating the structural motifs in a tRNA(Ser)-seryl-tRNA synthetase complex. A 1.8A-resolution tRNA(Ser) acceptor stem crystal structure was superimposed to a 2.9A-resolution crystal structure of a tRNA(Ser)-seryl-tRNA synthetase complex for a visualization of the binding environment of the tRNA(Ser) microhelix.  相似文献   

10.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem.The tRNAGly/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNAGly acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNAGly aminoacyl stem from Thermus thermophilus at 1.6 Å resolution and provide insight into the RNA geometry and hydration.  相似文献   

11.
tRNAs are aminoacylated by the aminoacyl-tRNA synthetases. There are at least 20 natural amino acids, but due to the redundancy of the genetic code, 64 codons on the mRNA. Therefore, there exist tRNA isoacceptors that are aminoacylated with the same amino acid, but differ in their sequence and in the anticodon. tRNA identity elements, which are sequence or structure motifs, assure the amino acid specificity. The Seryl-tRNA synthetase is an enzyme that depends on rather few and simple identity elements in tRNASer. The Seryl-tRNA-synthetase interacts with the tRNASer acceptor stem, which makes this part of the tRNA a valuable structural element for investigating motifs of the protein–RNA complex. We solved the high resolution crystal structures of two tRNASer acceptor stem microhelices and investigated their interaction with the Seryl-tRNA-synthetase by superposition experiments. The results presented here show that the amino acid side chains Ser151 and Ser156 of the synthetase are interacting in a very similar way with the RNA backbone of the microhelix and that the involved water molecules have almost identical positions within the tRNA/synthetase interface.  相似文献   

12.
The structure and function of in vitro transcribed tRNA(Asp) variants with inserted conformational features characteristic of yeast tRNA(Phe), such as the length of the variable region or the arrangement of the conserved residues in the D-loop, have been investigated. Although they exhibit significant conformational alterations as revealed by Pb2+ treatment, these variants are still efficiently aspartylated by yeast aspartyl-tRNA synthetase. Thus, this synthetase can accommodate a variety of tRNA conformers. In a second series of variants, the identity determinants of yeast tRNA(Phe) were transplanted into the previous structural variants of tRNA(Asp). The phenylalanine acceptance of these variants improves with increasing the number of structural characteristics of tRNA(Phe), suggesting that phenylalanyl-tRNA synthetase is sensitive to the conformational frame embedding the cognate identity nucleotides. These results contrast with the efficient transplantation of tRNA(Asp) identity elements into yeast tRNA(Phe). This indicates that synthetases respond differently to the detailed conformation of their tRNA substrates. Efficient aminoacylation is not only dependent on the presence of the set of identity nucleotides, but also on a precise conformation of the tRNA.  相似文献   

13.
Freyhult E  Cui Y  Nilsson O  Ardell DH 《Biochimie》2007,89(10):1276-1288
There are at least 21 subfunctional classes of tRNAs in most cells that, despite a very highly conserved and compact common structure, must interact specifically with different cliques of proteins or cause grave organismal consequences. Protein recognition of specific tRNA substrates is achieved in part through class-restricted tRNA features called tRNA identity determinants. In earlier work we used TFAM, a statistical classifier of tRNA function, to show evidence of unexpectedly large diversity among bacteria in tRNA identity determinants. We also created a data reduction technique called function logos to visualize identity determinants for a given taxon. Here we show evidence that determinants for lysylated isoleucine tRNAs are not the same in Proteobacteria as in other bacterial groups including the Cyanobacteria. Consistent with this, the lysylating biosynthetic enzyme TilS lacks a C-terminal domain in Cyanobacteria that is present in Proteobacteria. We present here, using function logos, a map estimating all potential identity determinants generally operational in Cyanobacteria and Proteobacteria. To further isolate the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria, we created two new data reduction visualizations to contrast sequence and function logos between two taxa. One, called Information Difference logos (ID logos), shows the evolutionary gain or retention of functional information associated to features in one lineage. The other, Kullback-Leibler divergence Difference logos (KLD logos), shows recruitments or shifts in the functional associations of features, especially those informative in both lineages. We used these new logos to specifically isolate and visualize the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria. Our graphical results point to numerous differences in potential tRNA identity determinants between these groups. Although more differences in general are explained by shifts in functional association rather than gains or losses, the apparent identity differences in lysylated isoleucine tRNAs appear to have evolved through both mechanisms.  相似文献   

14.
Ambrogelly A  Frugier M  Ibba M  Söll D  Giegé R 《FEBS letters》2005,579(12):2629-2634
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.  相似文献   

15.
Transfer RNA (tRNA) identify is maintained by the highly specific interaction of a few defined nucleotides or groups of nucleotides, called identity elements, with the cognate aminoacyl-tRNA synthetase, and by nonproductive interactions with the other 19 aminoacyl-tRNA synthetases. Most tRNAs have a set of identity elements in at least two locations, commonly in the anticodon loop or in the acceptor stem, and at the discriminator base position 73. We have used T7 RNA polymerase transcribed tRNAs to demonstrate that the sole replacement of the discriminator base A73 of human tRNA(Leu) with the tRNA(Ser)-specific G generates a complete identity switch to serine acceptance. The reverse experiment, the exchange of G73 in human tRNA(Ser) for the tRNA(Leu-specific A, causes a total loss of serine specificity without creating any leucine acceptance. These results suggest that the discriminator base A73 of human tRNA(Leu) alone protects this tRNA against serylation by seryl-tRNA synthetase. This is the first report of a complete identity switch caused by an exchange of the discriminator base alone.  相似文献   

16.
Proper recognition of tRNAs by their aminoacyl-tRNA synthetase is essential for translation accuracy. Following evidence that the enzymes can recognize the correct tRNA even when anticodon information is masked, we search for additional nucleotide positions within the tRNA molecule that potentially contain information for amino acid identification. Analyzing 3936 sequences of tRNA genes from 86 archaeal species, we show that the tRNAs’ cognate amino acids can be identified by the information embedded in the tRNAs’ nucleotide positions without relying on the anticodon information. We present a small set of six to 10 informative positions along the tRNA, which allow for amino acid identification accuracy of 90.6% to 97.4%, respectively. We inspected tRNAs for each of the 20 amino acid types for such informative positions and found that tRNA genes for some amino acids are distinguishable from others by as few as one or two positions. The informative nucleotide positions are in agreement with nucleotide positions that were experimentally shown to affect the loaded amino acid identity. Interestingly, the knowledge gained from the tRNA genes of one archaeal phylum does not extrapolate well to another phylum. Furthermore, each species has a unique ensemble of nucleotides in the informative tRNA positions, and the similarity between the sets of positions of two distinct species reflects their evolutionary distance. Hence, we term this set of informative positions a “tRNA cipher.” It is tempting to suggest that the diverging code identified here might also serve the aminoacyl tRNA synthetase in the task of tRNA recognition.  相似文献   

17.
18.
The tRNAGly/Glycyl-tRNA synthetase system belongs to the so called ‘class II’ in which tRNA identity elements consist of relative few and simple motifs, as compared to ‘class I’ where the tRNA determinants are more complicated and spread over different parts of the tRNA, mostly including the anticodon. The determinants from ‘class II’ although, are located in the aminoacyl stem and sometimes include the discriminator base. There exist predominant structure differences for the Glycyl-tRNA-synthetases and for the tRNAGly identity elements comparing eucaryotic/archaebacterial and eubacterial systems.We focus on comparative X-ray structure analysis of tRNAGly acceptor stem microhelices from different organisms. Here, we report the X-ray structure of the human tRNAGly microhelix isoacceptor G9990 at 1.18 Å resolution. Superposition experiments to another human tRNAGly microhelix and a detailed comparison of the RNA hydration patterns show a great number of water molecules with identical positions in both RNAs. This is the first structure comparison of hydration layers from two isoacceptor tRNA microhelices with a naturally occurring base pair exchange.  相似文献   

19.
20.
tRNA identity elements assure the correct aminoacylation of tRNAs by the cognate aminoacyl-tRNA synthetases. tRNASer belongs to the so-called class II system, in which the identity elements are rather simple and are mostly located in the acceptor stem region, in contrast to ‘class I’, where tRNA determinants are more complex and are located within different regions of the tRNA.The structure of an Escherichia coli tRNASer acceptor stem microhelix was solved by high resolution X-ray structure analysis. The RNA crystallizes in the space group C2, with one molecule per asymmetric unit and with the cell constants a = 35.79, b = 39.13, c = 31.37 Å, and β = 111.1°. A defined hydration pattern of 97 water molecules surrounds the tRNASer acceptor stem microhelix. Additionally, two magnesium binding sites were detected in the tRNASer aminoacyl stem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号