首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assignment of the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor with the use of two-dimensional 1H nuclear magnetic resonance techniques at 500 MHz is described. The assignments are based entirely on the known amino acid sequence and the nuclear magnetic resonance data. Individual resonance assignments were obtained for all backbone and Cβ protons, with the exception of those of Arg1, Pro2, Pro13 and the amide proton of Gly37. The side-chain resonance assignments are complete, with the exception of Pro2 and Pro13, the Nδ protons of Asn44 and the peripheral protons of the lysine residues and all but two of the arginine residues.  相似文献   

2.
Two different, theoretical studies of intramolecular proton-proton distances in polypeptide chains are described. Firstly, the distances between amide, Cα and Cβ protons of neighbouring residues in the amino acid sequence, which correspond to the sterically allowed values for the dihedral angles φi, ψi and χi1, were computed. Secondly, the frequency with which short distances occur between amide, Cα and Cβ protons of neighbouring and distant residues in the amino acid sequence were statistically evaluated in a representative sample of globular protein crystal structures. Both approaches imply that semi-quantitative measurements of short, non-bonding proton-proton distances, e.g. by nuclear Overhauser experiments, should present a reliable and generally applicable method for sequential, individual resonance assignments in protein 1H nuclear magnetic resonance spectra. Similar calculations imply that corresponding distance measurements can be used for resonance assignments in the side-chains of the aromatic amino acid residues, asparagine and glutamine, where the complete spin systems cannot usually be identified from through-bond spin-spin coupling connectivities.  相似文献   

3.
A general scheme is proposed for the determination of spatial protein structures by proton nuclear magnetic resonance. The scheme relies on experimental observation by two-dimensional nuclear magnetic resonance techniques of complete throughbond and through-space proton-proton connectivity maps. These are used to obtain sequential resonance assignments for the individual residues in the amino acid sequence and to characterize the spatial polypeptide structure by a tight network of semi-quantitative, intramolecular distance constraints.  相似文献   

4.
5.
A procedure is described to determine the three-dimensional structure of biomolecules from nuclear magnetic resonance data. This procedure combines model building with a restrained molecular dynamics algorithm, in which distance information from nuclear Overhauser effects is incorporated in the form of pseudo potentials. The method has been applied to the N-terminal DNA-binding domain or headpiece (amino acid residues 1 to 51) of the lac repressor from Escherichia coli, for which no crystal structure is available. The relative orientation of the three helices of the headpiece is similar to that of the three homologous helices found in the cI repressor of bacteriophage lambda.  相似文献   

6.
The use of proton-proton nuclear Overhauser enhancement (NOE) distance information for identification of polypeptide secondary structures in non-crystalline proteins was investigated by stereochemical studies of standard secondary structures and by statistical analyses of the secondary structures in the crystal conformations of a group of globular proteins. Both regular helix and beta-sheet secondary structures were found to contain a dense network of short 1H-1H distances. The results obtained imply that the combined information on all these distances obtained from visual inspection of the two-dimensional NOE (NOESY) spectra is sufficient for determination of the helical and beta-sheet secondary structures in small globular proteins. Furthermore, cis peptide bonds can be identified from unique, short sequential proton-proton distances. Limitations of this empirical approach are that the exact start or end of a helix may be difficult to define when the adjoining residues form a tight turn, and that unambiguous identification of tight turns can usually be obtained only in the hairpins of antiparallel beta-structures. The short distances between protons in pentapeptide segments of the different secondary structures have been tabulated to provide a generally applicable guide for the analysis of NOESY spectra of proteins.  相似文献   

7.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the trypsin inhibitor homologue K from the venom of Dendroaspis polylepis polylepis is described and documented. The assignments are based entirely on the amino acid sequence and on 2-dimensional n.m.r. experiments at 360 and 500 M Hz. Individual assignments were obtained for the backbone and C beta protons of all 57 residues of the inhibitor homologue K, with the exceptions of the N-terminal amino group, the amide protons of Arg16, Gly37 and Gly40 and the C beta protons of Arg16 and Pro19. The assignments for the non-labile protons of the amino acid side-chains are complete, with the exception of Gln29, Glu49 and all the proline, lysine and arginine residues. For Asn and Trp the labile side-chain protons have also been assigned. The chemical shifts for the assigned resonances are listed for an aqueous solution at 50 degrees C and pH 3.4.  相似文献   

8.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   

9.
10.
We have examined the circular dichroism and nuclear magnetic resonance spectra of a long neurotoxin, alpha-bungarotoxin, over a wide range of pH values and temperatures, and under high salt conditions. The observations are interpreted partly in terms of the known crystal structure of this polypeptide. We support earlier findings of a greater degree of beta-sheet structure in solution than has been reported by X-ray crystallography and, importantly, the invariant residue associated with neurotoxicity, Trp29, is shown to be in a similar environment to that found in alpha-cobratoxin and LS III from Laticauda semifasciata. The implications of this observation for structure/function relationships are outlined.  相似文献   

11.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the protease inhibitor IIA from bull seminal plasma is described and documented. The assignments are based entirely on the amino acid sequence and on two-dimensional n.m.r. experiments at 500 MHz. Individual assignments were obtained at 18 degrees C and 45 degrees C for the backbone protons of all 57 amino acid residues, with the single exception of the N-terminal pyroglutamate amide proton. The amino acid side-chain resonance assignments are complete, with the exception of 17 long side-chains, i.e. Pro13, Met43 and all the Glu, Gln, Lys and Arg, where only one or two resonances of C beta H2 and in some cases C gamma H2 could be identified. The sequential assignments showed that the order of the two C-terminal residues in the previously established primary structure had to be changed; this was then confirmed by chemical methods. The chemical shifts for the assigned resonances at 18 degrees C and 45 degrees C are listed for an aqueous solution at pH 4.9. A preliminary characterization of the polypeptide secondary structure was obtained from the observed patterns of sequential connectivities.  相似文献   

12.
A procedure is described here whereby the conformation, of a flexible molecule in solution can be found. The method depends on the study of the nuclear magnetic resonance spectrum of the molecule in the presence of perturbations due to specifically bound lanthanide cations. The magnetic perturbations are of two kinds: shifts of nuclear magnetic resonance spectral lines in the presence of cations such as Eu3+ and changes in relaxation rates of the nuclear magnetic resonance excitations in the presence of cations such as Gd3+. Suitable expressions are given for the relation between the magnitude of the perturbations and the geometry of the lanthanide complex in the absence of through-bond perturbations and for an axially symmetric system. It is proved that the spectral changes described here are not due to through-bond (contact) effects. The circumstances, in which the anisotropy of the magnetic susceptibility tensor, as seen in the nuclear magnetic resonance spectra, is of axial symmetry, are defined. The experimental systems described are of this kind. A computer program has been devised that searches for the conformations of the molecule which fit the nuclear magnetic resonance data.We outline here the principles of the method and how we have used a combination of relaxation and shift probes to obtain the conformation of adenosine-5′-monophosphate at pH 2. It is shown that a small family of closely related conformations fit the nuclear magnetic resonance data. These conformations are very similar to that of the crystal structure of AMP.  相似文献   

13.
Relaxation times and integrated intensities have been obtained from dipolar decoupled 13C magnetic resonance spectra of reconstituted fibrils of chick calvaria collagen enriched at the glycine Ca and C′ positions. The data obtained are consistent with a model in which collagen molecules reorient about the long axis of the helix with a rotational diffusion constant (R1) of ~107 s?1, a value similar to that expected for the helix in solution. Data obtained from natural abundance 13C spectra of native (crosslinked) calf achilles tendon and rat tail tendon provide evidence of rapid anisotropic reorientation for at least 75% of the carbons in these tissues. Hence, our preliminary data indicate that, in these materials, the intermolecular interactions in the fibrilar collagen lattice can accommodate rapid reorientation at a majority of carbon sites.  相似文献   

14.
13C and 15N chemical shift anisotropy and 15N1H dipolar powder patterns from backbone sites of the coat protein in fd bacteriophage are not averaged by motion. This means that the polypeptide backbone of the protein has no large amplitude motions rapid compared to 104 Hz. Relaxation studies on the 13Cα and 15N amide resonances indicate the presence of motions on the 109 Hz timescale. These results are reconciled with a model where an otherwise rigid backbone undergoes small amplitude, rapid motions.  相似文献   

15.
The high resolution 1H and 13C nuclear magnetic resonance (NMR) spectra of galactosylceramides containing n-fatty acids and α-hydroxy fatty acids were recorded in dimethylsulfoxide solution with and without addition of D2O. From the coupling constants of the sugar ring protons, a 4C1 conformation can be deduced. In contrast to the conformation in aqueous solution, the C6 hydroxymethylene group is freely rotating around the C6C5 bond. In the ceramide residue all signals produced by protons linked to carbons bearing electronegative substituents could be attributed. The large difference in coupling constants of the methylene protons of C1′ to the C2′ methine proton of the sphingosine indicates a restricted rotation around the C1′C2′ bond. The assignments of the hydroxy and amino protons follow from the decoupling of the corresponding methine protons.  相似文献   

16.
We have purified haemoglobin Philly by isoelectric focusing on polyacrylamide gel, and studied its oxygen equilibrium, proton nuclear magnetic resonance spectra, mechanical stability, and pH-dependent u.v. difference spectrum. Stripped haemoglobin Philly binds oxygen non-co-operatively with high affinity. Inorganic phosphate and 2,3-diphosphoglycerate have little effect on the equilibrium curve, but inositol hexaphosphate lowers the affinity and induces co-operativity. These properties are explained by the nuclear magnetic resonance spectra which show that stripped deoxyhaemoglobin Philly has the quaternary oxy structure and that inositol hexaphosphate converts it to the deoxy structure. An exchangeable proton resonance at ?8.3 p.p.m. from water, which is present in oxy- and deoxyhaemoglobin A, is absent in both these derivatives of haemoglobin Philly and can therefore be assigned to one of the hydrogen bonds made by tyrosine C1-(35)β, probably the one to aspartate H8(126)α at the α1β1 contact. Haemoglobin Philly shows the same pH-dependent u.v. difference spectrum as haemoglobin A, only weaker, so that a tyrosine other than 35β must be mainly responsible for this.  相似文献   

17.
We have examined the N-terminal 56 amino acid fragment, the domain that can bind DNA independently, from 3-fluorotyrosine-substituted Escherichia coli lac repressor by 19F-nuclear magnetic resonance. The fragments or “headpieces” from four altered repressers missing each of the tyrosines in turn were examined in parallel. When the wild-type N-terminal fragment is titrated with a 36 base-pair lac operator DNA sequence, the 19F resonances undergo changes in their chemical shifts that are different from those changes when the N-terminal fragment is titrated with non-specific DNA fragments. By looking at these operator-induced changes as well as pH-dependent effects with all four altered N-terminal fragments, we show systematic correlations with the genetic data. The data lead us to conclude that upon operator DNA binding: (1) tyrosine 7 is displaced to a less polar environment and the higher than normal pK value of the phenolic OH group is decreased; (2) tyrosine 12 does not change much in either its mobility or environment; and (3) tyrosine 17 is involved, as suggested by the genetic data, when the headpiece forms a complex with operator DNA.  相似文献   

18.
The conformational proclivity of leucine and methionine enkephalinamides in deuterated dimethyl sulphoxide has been investigated using proton magnetic resonance at 500 MHz. The resonances from the spin system of the various amino acid residues have been assigned from the 2-dimensional correlated spectroscopy spectra. The temperature variation of the amide proton shifts indicates that none of the amide proton is intramolecularly hydrogen-bonded or solvent-shielded. The analysis of vicinal coupling constants,3JHN.C 2H,along with temperature coefficients and the absence of characteristic nuclear Overhauser effect cross peaks between the NH protons reveal that there is no evidence of the chain folding in these molecules. However, the observation of nuclear Overhauser effect cross peaks between the NH and the CαH of the preceding residue indicates preference for extended backbone conformation with preferred side chain orientations particularly of Tyr and Phe in both [Leu5]- and [Met5]-enkephalinamides.  相似文献   

19.
The motional state of RNA in tomato bushy stunt virus, both in the crystalline state and in solution, has been investigated using 31P nuclear magnetic resonance methods. It has been found that the RNA is highly immobile in the native virus and it is suggested that the lack of a high-resolution X-ray diffraction pattern for either the RNA or the N-terminal regions of the protein coat molecules (Harrison et al., 1978) is due to static disorder in the crystals. Dynamic disorder has been detected in the virus after treatment with EDTA, which causes a structural change and an increase in particle size.  相似文献   

20.
The 1H nuclear magnetic resonance (n.m.r.) spectrum of the alpha-amylase inhibitor Tendamistat was completely assigned with the use of phase-sensitive homonuclear two-dimensional n.m.r. The assignments include the non-labile protons of the 74 amino acid residues as well as the labile protons which exchange sufficiently slowly to be observed in H2O solution. The proton chemical shifts are listed at 50 degrees C and pH 3.2, which coincides with the conditions used for the determination of the three-dimensional structure of Tendamistat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号