首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1988,146(2):161-165
The compound [Cr(en)3][ZnCl4]Cl has been synthesized by reaction of CrCl3·6H2O, Zn and [Cr(en)3]2(SO4)3 in HCl. Its molecular and crystalline structure was determined by X-ray diffraction methods, being monoclinic, P21/c, a=21.215(3), b=12.532(2), c=13.707(2) Å, β=95.21°, V= 3629(2) Å3, Dx=1.738g cm−3, MW=474.9, Z= 8, F(000)=1928, λ(Mo Kα)=0.71069 Å, μ(Mo Kα)= 27.04 cm−1, 288 K. No significant exchange interactions between Cr(III) cations in the crystalline lattice were found. Curie-Weiss behavior was found in the three directions tested (g1=2.06±0.02,g2= 2.08±0.02,g3=2.09±0.01), T=1.2-1.4 K.  相似文献   

2.
《Inorganica chimica acta》1988,149(2):307-314
When slowly evaporated, the reaction of NdCl3· nH2O with 15-crown-5 in a 3:1 mixture of acetonitrile:methanol produces two crystalline hydrates. The decahydrate, [Nd(OH2)9]Cl3·15-crown-5·H2O, is orthorhombic, P212121, with (at −150 °C) a = 10.571(4), b = 15.220(7), c = 15.686(7) Å, and Dcalc = 1.71 g cm−3 for Z = 4. These crystals are stable to the moisture in air. Each Nd is nine-coordinate with tricapped trigonal prismatic geometry. The nine coordinated water molecules are hydrogen bonded to two symmetry related crown ethers, all three chloride ions, and the tenth water molecule. The crown has a total of six hydrogen bonds, four on one side (two to a single oxygen atom) and two on the other. This ether exhibits conformational disorder. The hexahydrate, [NdCl2(OH2)6]Cl·15-crown-5 is deliquescent, dissolving in air and recrystallizing as [NdCl2(OH2)6]Cl. Crystals of this complex are monoclinic, P21/n, with (at 20 °C) a = 9.821(3), b = 16.978(9), c = 12.849(8) Å, β = 94.06(5)°, and Dcalc = 1.80 g cm−3 for Z = 4. The Nd atom exists in a distorted dodecahedral geometry with one chlorine in an A site and one in a B site. The coordinated chlorine atoms accept hydrogen bonds producing polymeric zigzag hydrogen bonded chains along c. The third noncoordinated chloride ion accepts four hydrogen bonds, three from one formula unit and one from a second formula unit related by a unit translation along a. The crown ethers accept five hydrogen bonds, two on one side, and three on the other, thus separating the zigzag chains along b.  相似文献   

3.
The crystal and molecular structures of the ligand bpenH2 (N,N′-bis(2′-pyridinecarboxamide)-1,2-ethane) and its deprotonated dimeric cobalt(III) complex fac-[Co2(bpen)3]·12H2O have been determined by single-crystal X-ray diffraction methods. Crystal data: (a) bpenH2, C14H14N4O2, orthorhombic, space group Pccn, a=9.638(1), b= 15.288(1), c = 8.684(1) Å, Z=4; (b) Co2(bpen)3· 12H2O, C42H60N12O18Co2, triclinic, space group P1, a = 11.128(3), b = 14.316(5), c = 16.466(4) Å, α= 92.02(2)°, β = 95.21(2)°, γ = 99.30(2)°, Z = 2.The structures were refined to R 0.034 and 0.053 for 1064 and 7748 independent reflexions, respectively. The bpenH2 molecule has a space group imposed centre of symmetry, with the amide group adopting a trans configuration in the closely planar picolinamide moiety. The cobalt complex is dimeric in which three bpen ligands, acting each as a bis(N2-bidentate), bridge the two metal atoms. Each cobalt atom is octahedral with CoNpy 1.944(3) and Co Nam 1.933(3) Å. The Co··Co separation is 5.493(1) Å. The symmetry of the dimeric molecule is D3 which is consistent with that indicated from solution NMR studies.  相似文献   

4.
《Inorganica chimica acta》1988,152(2):125-134
The compounds cis-[(TMED)Pt(9-MeG)2](PF6)2· 2H2O (1), cis-[(TMED)Pt(9-EtG)2](ClO4)2·2H2O(2). cis-[(TMED)Pt(DMX)2](PF6)2·4H2O (3) and cis-[(TMED)Pt(TMX)2](PF6)2·xH2O (x ≈ 4) (4), where TMED = N,N,N′,N′-tetramethylethylenediamine, 9-MeG = 9-methylguanine, 9-EtG = 9-ethylguanine, DMX = 1,3-dimethylxanthine and TMX = 1,3,9-trimethylxanthine, have been prepared and structurally characterized by X-ray methods. Compound 1 crystallises in space group Pn, with a = 10.675(1), b = 12.970(1), c = 12.016(1) Å, β = 97.05(1)°, Z = 2. Compound 2 crystallizes in space group Pbca, with a = 13.886(1), b = 31.742(4), c = 14.958(2) Å, Z = 8. Compound 3 crystallizes in space group C2/c, with a = 37.557(4), b = 12.215(2), c = 15.823(3) Å, β = 90.47(1)°, Z = 8. Compound 4 cyrstallises in the space group C2/c, with a = 38.516(5), b = 12.078(2), c = 16.219(2) Å, β = 97.88(1)°, Z = 8. Compounds 3 and 4 are structurally similar. Each [(TMED)Pt(Base)2]2+ cation shows square-planar coordination to Pt with the two independent purine ligands coordinated through N7 and arranged in a head-to-tail conformation. The structures are compared with each other and with related compounds in terms of their base/base and base/coordination plane dihedral angles, and their different crystalline environments.  相似文献   

5.
Complexes of 2-(o-hydroxyphenyl)pyridine (PhOHpy) with group VIIIB metal ions were synthesized and characterized by elemental analysis and spectroscopic measurements. The crystal and molecular structures of Co(PhOpy)3 and Pd(PhOpy)2 were determined. The Co complex crystallizes in the orthorhombic space group Fdd2, with a = 28.185- (14), b = 36.639(18), c = 12.639(18) Å; Z = 16. The molecule has a mer-octahedral structure. Crystals of the Pd complex are orthorhombic, space group Pbca, with a = 17.140(3), b = 11.143(2), c = 9.488(2) Å, Z = 4. The molecule is square-planar.  相似文献   

6.
《Inorganica chimica acta》1988,151(2):153-161
Two crystalline forms of the [Cu(II) (IMP) (DPA) (H2O)]2·nH2O (IMP=inosine 5′-monophosphate, DPA=2,2′-dipyridylamine) complex were obtained from aqueous solution at pH=6.2. The crystals of the two forms belong to the monoclinic system, space group P21. The cell parameters are: a=9.445(2), b=33.902(4), c=7.802(2) Å, β=90.48(2)°, Z= 2, Dc=1.69g cm−3 and μ(Mo Kα) = 10.49cm−1 (form α, n=4), and a=7.828(2), b=18.552(3), c=17.378(3) Å, β=91.16(2)°, Z=2, Dc=1.66 g cm−3, μ(Mo Kα) = 10.40 cm−1 (form β, n=3.62). Bau and coworkers reported the preparation of form α by vapor diffusion of CH3CN into aqueous solution containing Cu(NO3)2, Na2IMP and DPA in a 1:1:1 molar ratio and the analysis of the compound by single crystal X-ray diffraction [1].Intensities for 3412 reflections were collected from a crystal of form β in the present work. Graphite-monochromatized Mo Kα radiation was employed. The structure was refined to final R and Rw values of 0.1000 and 0.1115 respectively. The dimeric units contain two copper ions in square-pyramidal coordination polyhedra. Each polyhedron consists of two nitrogen atoms of DPA, two oxygen atoms from two phosphate groups and a water molecule in the axial position. A statistical disorder was found in a nucleotide moiety of the dimer. Two sets of atomic positions corresponding to the purine system were refined with site occupation factors of 0.62(1) and 0.38(1) respectively. Also the ribose ring shows a disorder with two possible conformations. The puckering mode of the prevailing conformation is C(3′)-endo. In the other nucleotide molecule of the dimer the furanose puckering mode is C(3′)-endo. The rotation around the glycosyl linkages can be described as ‘anti’ in the structure of form β. The C(4)N(9)C(1′)O(4′) torsion angle values are −97(2) and −94(3)° for the disordered nucleotide molecule and +91(2)o for the other nucleotide moiety. Strong intermolecular DPADPA and purine-purine stacking interactions stabilize the crystal lattice. The differences on the nucleotide conformation between the structure of form α and form β can probably be ascribed to differences in the hydrogen bonds and stacking interactions.  相似文献   

7.
J.S. Leigh  M. Erecińska 《BBA》1975,387(1):95-106
Succinate-cytochrome c reductase can be easily solubilized in a phospholipid mixture (1:1, lysolecithin:lecithin) in the absence of detergents. The resulting solution contains two b cytochromes with half-reduction potentials of 95 ± 10 mV (b561), and 0 ± 10 mV (b566) and cytochrome c1 (Em 7.2 = +280±5 mV). The oxidation-reduction midpoint potentials obtained by optical potentiometric titrations are identical to those determined by the EPR titrations and are 40–60 mV higher than the corresponding midpoint potentials of these cytochromes in intact mitochondria. In contrast to detergent-suspended preparations, no CO-sensitive cytochrome b can be detected in the phospholipid-solubilized preparation or intact mitochondria. The half-reduction potential of cytochrome b566 is pH-dependent above pH 7.0 (?60 mV/pH unit) while that of b561 is essentially pH-independent from pH 6.7–8.5, in contrast to its pH dependence in intact mitochondria. EPR characterizations show the presence of three oxidized low-spin heme-iron signals with g values of 3.78, 3.41 and 3.37. The identification of these signals with cytochromes b566 (bT), b561 (bK) and c1 respectively is made on the basis of redox midpoint potentials. No significant amounts of oxidized high-spin heme-iron are detectable. In addition, the preparation contains four distinct types of iron-sulfur centers: S1 and S2 (Em 7.4 = ?260 mV and 0 mV), and two iron-sulfur proteins which are associated with the cytochrome b-c1 complex: Rieske's iron-sulfur protein (Em 7.4 = +280 mV) and Ohnishi's Center 5 (Em 7.4 = +35 mV).  相似文献   

8.
《Inorganica chimica acta》1987,130(1):131-137
The interaction of hydrated chloride salts of Gd3+ and Lu3+ with 15-crown-5 in a 1:3 mixture of CH3OH:CH3CN produces crystalline [M(OH2)8]Cl3· (15-crown-5) (M = Gd, Lu). The crystal and molecular structures of both complexes have been determined by single crystal X-ray diffraction. Both are isostructural with previously determined Y analog and crystallize in the monoclinic space group P21/n with Z = 4. Lattice parameters are a = 9.247(4), b = 17.312(5), c = 15.191(6) Å, β = 92.19(3)°, Dcalc = 1.72 g cm−3 for M = Gd and a = 9.150(1), b = 17.171(1), c = 15.217(1) Å, β = 92.64(1)°, Dcalc = 1.80 g cm−3 for M = Lu. Each complex was refined by least-squares to final conventional R values of 0.052 (M = Gd, 2932 observed [Fo⩾5σ(Fo) reflections) and 0.036 (M = Lu, 3313 observed reflections). The octaaquo M(III) ions exist as a distorted dodecahedron with average MOH2 separations of 2.41(4) Å (M = Gd) and 2.35(4) Å (M = Lu). The crown ether molecule is hydrogen bonded to metal coordinated water molecules to form polymeric chains along b. The remaining water molecule hydrogen atoms participate in hydrogen bonds with the chloride ions essentially in the ac plane. Two resolvable disordered crown ether conformations are observed with occupancies of 60%/40% (M = Gd) and 75%/25% (M = Lu).  相似文献   

9.
E. Lehoczki  K. Csatorday 《BBA》1975,396(1):86-92
The concentration-dependent depolarization, concentration-dependent quenching, absorption and fluorescence spectra in solutions of chlorophyllb-containing detergent micelles with Triton X-100 were studied in a concentration range ofc = 0.4 μM–0.6mM chlorophyllb andcd = 0.4–7.0mM Triton X-100. The concentration-dependent depolarization obeys Fo¨rster's theory of depolarization of fluorescence with a transfer distance parameterR0 = 43 ± 2A?. The concentration-dependent quenching is described by an empirical formula for the relative fluorescence yieldη/η0=sol1[1 + (cc1/2)2] given by Kelly and Porter (Kelly A. R. and Porter, G. (1970) Proc. R. Soc. Lond. Ser. A. 315, 149–161). With increasing chlorophyll b concentration the red absorption band at 650 nm is shifted toward a longer wavelength and its width increases by 10 nm, the intensity of the long wave fluorescence band increases about 720 nm. The results analysed in terms of these findings lead to the conclusions that chlorophyllb molecules are (a) locally concentrated in the micelles up to the concentration range of in vivo conditions, (b) partly in an aggregated state capable for fluorescence, (c) the chlorophyllb →chlorophyllb homotransfer may be about 3–26 % of the homotransfer chlorophylla →chlorophyll-a depending on the ratio of their concentrations.  相似文献   

10.
X-ray diffraction patterns of uniaxially oriented, polycrystalline fibers of neutral sodium pectate can be indexed on the basis of an orthogonal unit cell with dimensions a = 0.84 nm, b = 1.43 nm, c (fiber axis) = 1.34 nm, which contains trisaccharide fragments of two polygalacturonic chains of opposite sense. The polysaccharide chains have 31 screw symmetry but are arranged in a lattice that has space group symmetry P21 (unique axis b). There are three sodium ions in each crystal asymmetric unit. They are all octahedrally co-ordinated to oxygen atoms of the galacturonan chains or of water molecules. Every oxygen atom is involved also in at least one hydrogen bond. Sodium pectate can be partially converted to pectic acid whose polysaccharide chains preserve the 31 pectate conformation, are packed in an orthogonal unit cell also with P21 symmetry but with quite different dimensions a = 0.99 nm, b (unique 21 axis) = 1.23 nm, c (fiber axis) = 1.33 nm. In this lattice, the polygalacturonic acid chains form corrugated sheets in which alternate molecules have opposite sense and are extensively hydrogen-bonded through their carboxyl groups.  相似文献   

11.
An analytical technique for the in situ characterization of b- and c-type cytochromes has been developed. From evaluation of the results of potentiometric measurements and spectrum deconvolutions, it was concluded that an integrated best-fit analysis of potentiometric and spectral data gave the most reliable results. In the total cytochrome b content of cytoplasmic membranes from aerobically grown Escherichia coli, four major components are distinguished with α-band maxima at 77 K of 555.7, 556.7, 558.6 and 563.5 nm, and midpoint potentials at pH 7.0 of 46, 174, ?75 and 187 mV, respectively. In addition, two very small contributions to the α-band spectrum at 547.0 and 560.2 nm, with midpoint potentials of 71 and 169 mV, respectively, have been distinguished. On the basis of their spectral properties they should be designated as a cytochrome c and a cytochrome b, respectively. In Complex III, isolated from beef heart mitochondria, five cytochromes are distinguished: cytochrome c1 (Λm(25°C) = 553.5 nm; E0 = 238 mV) and four cytochromes bΛm(25°C) = 558.6, 561.2, 562.1, 566.1 nm and E0 = ?83, 26, 85, ?60 mV).  相似文献   

12.
derivatives of benzo[g]indazole 5a, b, benzo[h]quinazoline 7, 12a-c, 13a-c and 15a-c and benzo[h]quinoline 17a-c and 19a-c were synthesized from 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (1). Anticancer activity of all the synthesized compounds was evaluated against four cancerous cell lines; HepG2, MCF-7, HCT116 and Caco-2. MCF-7 cells emerged as the most sensitive cell line against the target compounds. All the examined compounds, except 5a and 5b, displayed potent to moderate anticancer activity against MCF-7 cells with an IC50 values ranging from 7.21 to 21.55 µM. In particular, compounds 15c and 19b emerged as the most potent derivatives against EGFR-expressing MCF-7 cells with IC50 values = 7.70 ± 0.39 and 7.21 ± 0.43 μM, respectively. Additionally, both compounds did not display any significant cytotoxicity towards normal BHK-21 fibroblast cells (IC50 value > 200 µM), thereby providing a good safety profile as anticancer agents. Furthermore, compounds 15c and 19b displayed potent inhibitory activity towards EGFR in the sub-micromolar range (IC50 = 0.13 ± 0.01 and 0.14 ± 0.01 μM, respectively), compared to that of Erlotinib (IC50 = 0.11 ± 0.01 μM). Docking studies for 15c and 19b into EGFR active site was carried out to explore their potential binding modes. Therefore, compounds 15c and 19b can be considered as interesting candidates for further development of more potent anticancer agents.  相似文献   

13.
Crystals of a tertiary complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase with the activators Mg2+ and CO2 have been grown. These crystals diffract strongly to 1.6 Å resolution. The spacegroup is C2221 with unit cell dimensions a = 158.6 Å, b = 158.6 Å, c = 203.4 Å. Additional local symmetry is apparent in the pattern of absences and the intensity distribution of the X-ray precession photographs. The photographs have been interpreted in terms of a molecule (consisting of eight large and eight small subunits, L8S8) with 222 symmetry and a molecular centre shifted 2 Å in the x direction from the origin of the unit cell. The asymmetric unit contains half the L8S8 molecule. The intensity distribution suggests that the molecular symmetry does not deviate far from 422. These crystals are compared with other crystalline forms of the enzyme and the implications of these results are discussed.  相似文献   

14.
Nickel(II) complexes with the compartmental Schiff bases derived from 2,6-diformyl-4-chlorophenol and 1,5-diamino-3-thiapentane (H2L1) or 3,3′-diamino-N-methyl-dipropylamine (H2L2) were synthesized, and the crystal structures of [Ni(L1)- (py)2] and [Ni(L2)(dmf)]·H20 were determined by X-ray crystallography.Ni(L1)(py)2 is monoclinic, space group C2/c, with a= 18.457(6), b = 11.116(7), c= 16.098(6) Å, and β = 115.79(5)°; Dc = 1.49 g cm−3 for Z = 4. The structure was refined to the final R of 6.9%. The molecule has C2 symmetry. The nickel atom is six-coordinated octahedral. Selected bond lengths are: NiO 2.04(1) Å, NiN (L1) 2.08(1) Å, NiN(py) 2.17(1) Å.[Ni(L2)(dmf)]·H2O is monoclinic, space group P21/n, with a = 17.329(6), b = 13.322(7), c = 12.476(7) Å and β = 95.43(5)°; Dc = 1.45 g cm−3 for Z = 4. The structure was refined to the final R of 5.1%. The nickel atom is bonded in the octahedral geometry to the bianionic pentadentate ligand L2 and to one molecule of dimethylformamide. Selected bond lengths are: NiO (charged) 2.063(3) Å (mean value), NiO (neutral) 2.120(3) Å, NiN (planar) 2.050(3) Å (mean value), NiN (tetrahedral) 2.177(3) Å.  相似文献   

15.
The compound VOCl2·2(3-Etpy)·H2O (Etpy = ethylpyridine) was prepared by slow hydrolysis of the toluene suspension obtained from the reaction of VCl4 with 3-ethylpyridine The crystal was found to be monoclinic C2/c, Z = 4, ϱ(calc.) = 1.426 × 103 kg m−3, a = 13.281(5), b = 13.989(7), c = 9.277(8) Å, V = 1723(2) Å3 β = 90.53(5)°.Final full matrix least-square refinement with anisotropic thermal parameters for all non-hydrogen atoms gave R = 0.039, Rw = 0.042, Rg = 0.053. The vanadium atom is hexacoordinate with the pyridine ligands in mutually trans positions in the plane containing the Cl atoms. The O vanadyl atom is in an axial position trans to the coordinated H2O molecule, and the OVO line is a binary axis for the molecule.  相似文献   

16.
《Inorganica chimica acta》1988,153(4):219-225
The preparations are reported of [Rh(RCO2)2L]2 [where R = CH3, C2H5, and CH3OCH2; L = 6-chloro-2-methoxy-9-[2(NR′2)ethyl]aminoacridine (R′ = H, CH3)]. X-ray structural studies have been carried out on two of the compounds [ R = C2H5, R′ = H, (1); R = CH3, R′ = CH3, (2)]. Compound 1 is monoclinic, space group C2/c, with a = 20.864(11), b = 15.736(4), c = 14.402(4) Å, β = 93.14(4)°, V = 4721 Å3, and Z = 4; 2 is monoclinic, space group P21/n, a = 8.861(2), b = 23.089(10), c = 12.014(2) Å, β = 105.84(2)°, V = 2365 Å3, and Z = 2. Both compounds comprise the standard dinuclear rhodium(II) carboxylate unit with the substituted acridine ligands coordinated to rhodium in the axial positions, via the NH2 group nitrogen in 1 and the N(CH3)2 nitrogen in 2.The dimethyl substitution on the tertiary amine group in 2, and an associated conformational change in the diamine chain, result in an increased separation of the acridine ligand from the metal centre. There is a pronounced acridine base stacking in 1 but not in 2.  相似文献   

17.
18.
Mannan triacetates prepared from material extracted from ivory nut and Tubera salep were studied by means of electron and X-ray diffraction. The former is uniquely constituted of acetylated d-mannopyranosyl units linked by a (1 → 4)-β-linkage whereas the latter contains acetylated (1 → 4)-β-d-glucopyranosyl randomly distributed in the backbone with a ratio of mannose to glucose of about 3:1. However, there seems to be no effect on crystallisation due to the presence of the glucosidic units on the conformation of the chain.Single crystals of ivory nut triacetate were prepared by slowly cooling a dilute solution of nitromethane and butanol. The crystals were long narrow laths which provide electron diffraction data after annealing at 190°C in a vacuum.Two different unit cells were derived from the acetylated Tubera salep X-ray data. A first unit cell with a = 1·18 nm, b = 1·54 nm and c = 1·60 nm contains eight sugar units, whereas the second unit cell with a = 0.369 nm, b = 0·96 nm and c = 1·58 nm would accommodate 16 residues. The latter agrees best with the base-plane parameters derived from electron diffraction of single crystals.The X-ray fibre diagram was interpreted in terms of a two-fold helix and an asymmetric unit composed of two triacetyl mannopyranosyl units. This means that two chemically identical mannose units would not be conformationally equivalent along the backbone.The presence of glucose units in the backbone does not seem to perturb the crystalline conformation. The ‘isomorphous replacement’ hypothesis was invoked to explain this observation. The helical parameters derived herein for Tubera salep mannan triacetate are different from those reported earlier for the same acetylated glucomannan but crystallised using a different technique. This is attributed to the occurrence of polymorphism in this material.  相似文献   

19.
The crystal structures of the cadmium(II) and lead(II) complexes of phenoxyacetic acid (PAH) have been determined by single crystal X-ray diffraction techniques. The cadmium complex, [Cd(PA)2(H2O)2] (1), space group C2, with Z = 2 in a cell of dimensions, a = 11.801(2), b = 5.484(1), c = 13.431(3) Å, β = 100.87(2)°, possesses a distorted trapezoidal bipyramidal coordination around the metal atom, involving two water oxygens [2.210(5) Å] and four carboxyl oxygens from two symmetrical bidentate phenoxyacetate ligands [2.363(4), 2.365(4) Å] with Cd lying on the crystallographic two- fold axis. The lead complex, [Pb2(PA)4(H2O)]n(2) is triclinic, space group P1, Z = 2, with a cell of dimensions, a = 10.135(4), b = 10.675(3), c = 19.285(9) Å, α = 114.66(3), β = 91.94(3) and γ = 114.99(3)°. (2) is a two-dimensional polymer with a repeating dimer sub-unit. The first lead [Pb(1)] has an irregular MO8 coordination [2.34?2.96(2) Å: mean, 2.63(2) Å] involving the water molecule, two oxygens from an asymmetric bidentate carboxylate group, two from a bidentate chelate [O(ether), O(carboxylate)] group and three from bridging oxygens, one of which also provides a polymer link to another symmetry generated lead. The second lead [Pb(2)] is irregular seven-coordinate [PbO, 2.48?2.73(2) Å: mean, 2.61(2) Å] with three bonds from the bridging groups, two from an unsymmetrical bidentate carboxylate (O, O′) group and one from a second carboxyl group which also bridges two Pb(2) centres in the polymer.  相似文献   

20.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号