首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ATPase (Ca2+ and K+ activated) activity of myosin prepared from muscles of 3–4 week rabbit embryos (EM) is slighly lower than that of adult fast muscle myosin (FM), but in contrast to the less active adult slow muscle myosin (SM) is stable on exposure to pH 9.2. Studies of the time course, by means of Na dodecyl-SO4 polyacrylamide gel electrophoresis, of changes in the pattern of polypeptides released by tryptic digestion show that in this regard EM is closest to SM. The light chain complement of EM appears identical with that of FM rather than of SM or cardiac myosin (CM) by the criteria of coelectrophoresis and removal by 5,5′-dithio-2-dinitrobenzoate treatment of LC2 except that the relative amount of LC3 is less in EM than in FM. The staining pattern of light meromyosin (EMM) paracrystals prepared from EM is distinct from either the FM, SM or CM LMM staining pattern. These studies suggest that different genes are involved in the coding for embryonic and adult heavy chains.  相似文献   

3.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

4.
Mg2+-ATPase activity was identified in the cytosol of human erythrocytes. A partial purification of this activity was achieved by an initial DEAE-Sephadex column chromatography, followed by gel filtration on Sephadex G-100 and then a second DEAE-Sephadex chromatography procedure. The enzyme appeared in the void volume of the Sephadex G-100 column and was retained on an Amicon XM100A ultrafiltration membrane. The molecular weight of the enzyme was estimated to be 113 000 from SDS gels. The above purification protocol yielded an enzyme with an optimal pH between 7.6 and 8.2. The enzyme activity increased linearly between 30 and 44°C. It was stable for several months at ?20°C. Magnesium was essential for activity, but the rate attainable with Mn2+ was at least as great as that due to Mg2+. No other divalent cation was able to substitute for Mg2+ or Mn2+. Neither low nor high Ca2+ concentrations significantly affected the enzymatic activity. Substrate specificity studies showed that ATP was the preferred substrate followed by CTP (46% of the rate produced by ATP). Hydrolysis of GTP, UTP, ITP and ADP was less than 10% of the rate seen with ATP. No phosphatase, pyrophosphatase, phosphodiesterase, hexokinase, phosphofructokinase or adenylate cyclase activity could be detected in this enzyme preparation. Calmodulin, which stimulates the (Ca2+ + Mg2+)-ATPase of the human erythrocyte membrane, failed to enhance the Mg2+-ATPase activity. Of considerable interest, the activity of this Mg2+-ATPase was enhanced approximately 5-fold by low concentrations of mercuric ion, p-hydroxymercuribenzoate and DTNB, but was much less sensitive to iodoacetamide.  相似文献   

5.
The unique myosin binding protein-c "motif" near the N-terminus of myosin binding protein-C (MyBP-C) binds myosin S2. Previous studies demonstrated that recombinant proteins containing the motif and flanking regions (e.g., C1C2) affect thin filament movement in motility assays using heavy meromyosin (S1 plus S2) as the molecular motor. To determine if S2 is required for these effects we investigated whether C1C2 affects motility in assays using only myosin S1 as the motor protein. Results demonstrate that effects of C1C2 are comparable in both systems and suggest that the MyBP-C motif affects motility through direct interactions with actin and/or myosin S1.  相似文献   

6.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   

7.
Structural consequences of antiarrhythmic drug interaction with erythrocyte membranes were analyzed in terms of resulting changes in the activity of membrane-associated acetylcholinesterase. When enzyme inhibitory effects of drugs were compared at concentrations producing an equivalent degree of erythrocyte antihemolysis, a number of distinct groupings emerged, indicating that the molecular consequences of drug-membrane interaction are not identical for all agents examined. Differences in drug-induced acetylcholinesterase inhibition in intact erythrocytes, erythrocyte membranes and a brain synaptic membrane preparation emphasized the role of membrane structural organization in determining the functional consequences of antiarrhythmic interaction in any given system. While the inhibitory actions of lidocaine, D-600 and bretylium in intact red cells were not altered by an increased transmembrane chloride gradient, enhanced enzyme inhibition by quinidine and propranolol was observed under these conditions. The diverse perturbational actions of these membrane-stabilizing antiarrhythmics observed here may be indicative of a corresponding degree of complexity in the mechanisms whereby substances modify the potential-dependent properties of excitable tissues.  相似文献   

8.
Reaction of isolated bovine rod outer segment membrane with radioactiveN-ethylmaleimide, both in the presence and absence of 1% dodecyl sulfate followed by dodecyl sulfate-polyacrylamide gel electrophoresis, shows that six sulfhydryl groups (96% of total sulfhydryl in this membrane) are located on the rhodopsin molecule.On the basis of their reactivity towardsp-chloromercuribenzoate andp-chloromercuribenzene sulfonate in suspensions of outer segment membranes, the sulfhydryl groups of rhodopsin can be divided into three pairs. One pair is rapidly modified, both in light and darkness. This modification does not impair the recombination capacity of opsin with 11-cis retinaldehyde under regeneration of rhodopsin. A second pair is modified upon prolonged interaction with thep-chloromercuriderivatives in darkness. Modification of this pair leaves the typical rhodopsin absorbance at 500 nm intact, but a proportional loss of recombination capacity does occur. The third pair is only modified after illumination and is probably located in the vicinity of the chromophoric center.The difference between these results and those obtained by modification with dithiobis-(2-nitrobenzoic acid) orN-ethylmaleimide in suspension, where even upon prolonged exposure to light as well as in darkness only two sulfhydryl groups of rhodopsin are modified, is explained by the detergent-like character of thep-chloromercuri-derivatives.  相似文献   

9.
Arginine deiminase (EC 3.5.3.6) from Mycoplasmaarthritidis is a dimeric enzyme. Velocity centrifugation in 6 M guanidine HCl and peptide mapping of the BrCN fragments suggest that the subunits are identical. The reaction of one out of four sulfhydryl groups with 0.3 mM 5,5′-dithiobis-(2-nitrobenzoic acid) has a half-life of about 30 min in 2 M guanidine HCl at 15°, pH 8. The enzyme is irreversibly inhibited by 1 mM formamidinium ion within 1 min. Inactivation by this affinity label is resolvable into two concurrent first-order reactions in the presence of guanidinium ion; the fraction of enzyme which reacts at the faster rate is about 50%. These results are interpreted as evidence for two catalytic subunits which differ in conformation.  相似文献   

10.
When a dilute suspension of the mitochondrial fraction of rat liver homogenates was incubated with chemically synthesized succinyl-CoA, a product was rapidly formed which was retained at pH 3.9 on Dowex 50 (H+). Although its acid-base properties were indistinguishable from those of δ-aminolevulinic acid, the product did not form a pyrrole with acetylacetone, nor was its enzymatic formation dependent on added glycine. The enzyme which cleaved succinyl-CoA to the δ-aminolevulinic acid-like product was inhibited by phenylmethyl sulfonylfluoride. The first substance formed by the peptidase was the unstable thioester of succinic acid and cysteamine which underwent rearrangement to the more stable N-succinyl cysteamine above pH 4.0.It is apparent that the assay of δ-aminolevulinic acid synthetase (EC 2.3.1.37) by the ion-exchange method of Ebert et al. (Ebert, P.S., Tschudy, D.P., Choudhry, J.N. and Chirigos, M.A. (1970) Biochim. Biophys. Acta 208, 236–250) can yield erroneous results with succinyl-coenzyme A as substrate, especially when incubations are carried out for less than 25 min.  相似文献   

11.
Cholesterol is a major component of biological membranes, yet there is very little information concerning its distribution across the membrane. Recent experiments in our laboratory, using cholesterol oxidase, have demonstrated that cholesterol can undergo a rapid transbilayer movement in lecithin-cholesterol vesicles in a half-time of 1 min or less at 37°C. In order to support this conclusion, we have sought other approaches to the measurement of this process. We now report our finding that the transbilayer movement of thiocholesterol in phospholipid vesicles occurs in a half-time of 1 min or less at 20°C.  相似文献   

12.
1. 1. Cu2+ at a concentration of 10−4 M, when applied to the external side of the frog skin produces an increase in the short-circuit current (Isc).
2. 2. This effect was studied in skins of Rana temporaria adapted to cold (5°C) and room temperature (20°C), skins of Rana pipiens adapted to cold, and the results compared with those obtained previously with Rana ribibunda.
3. 3. The observed effect is less dependent upon the adaptation to cold than upon the functional state of the skin: skins with low short circuit currents have a bigger response to Cu2+ than skins with high Isc.
4. 4. A species difference cannot be ruled out since skins of Rana ribibunda exhibiting high Isc give good responses to Cu2+.
5. 5. 5,5′-dithiobis(2-nitrobenzoic acid), a sulphydryl-oxidizing reagent, produces an effect similar to that of Cu2+, and dithiothreitol an SH-reducing agent, reverses the effect of this ion.
6. 6. Cu2+ also induces an increase in the unidirectional K+ fluxes and unmasks a net outward potassium flux.
7. 7. The outward K+ flux induced by Cu2+ is sensitive to ouabain.
8. 8. It is concluded that Cu2+ increases the permeability of the external barrier of the frog skin to Na+ and K+, probably by reacting with SH groups.
Abbreviations: DTNB; 5; 5′-dithiobis(2-nitrobenzoic acid)  相似文献   

13.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ + K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5 -di(adenosine-5′) pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5 = 116 μM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

14.
Salmonella typhimurium strains which are commonly used in the Ames test for screening potential carcinogens were examined for a number of drug-metabolizing systems. Neither cytochrome P-450 itself nor two activities catalyzed by the cytochrome P-450 system in mammalian cells, i.e., benzpyrene monooxygenase and ethoxycoumarin O-deethylation, could be detected. Nor do these bacterial strains demonstrate any ability to detoxify epoxides by hydrating them or to conjugate p-nitrophenol with glucuronic acid.On the other hand, S. typhimurium strains G46, TA1535, TA100, TA1538 and TA98 contain considerable amounts of acid-soluble thiols, approx. 5–10% of which is glutathione. These bacteria can also enzymatically conjugate glutathione with 1-chloro-2,4-dinitrobenzene (CDNB) and can reduce oxidized glutathione using NADPH as cofactor.Thus, enzymatic and non-enzymatic reaction of immediate carcinogens with thiol groups in S. typhimurium may have a significant effect on the outcome of the Ames test in certain cases.  相似文献   

15.
We report the initial biochemical characterization of an alternatively spliced isoform of nonmuscle heavy meromyosin (HMM) II-B2 and compare it with HMM II-B0, the nonspliced isoform. HMM II-B2 is the HMM derivative of an alternatively spliced isoform of endogenous nonmuscle myosin (NM) II-B, which has 21-amino acids inserted into loop 2, near the actin-binding region. NM II-B2 is expressed in the Purkinje cells of the cerebellum as well as in other neuronal cells [X. Ma, S. Kawamoto, J. Uribe, R.S. Adelstein, Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development, Mol. Biol. Cell 15 (2006) 2138-2149]. In contrast to any of the previously described isoforms of NM II (II-A, II-B0, II-B1, II-C0 and II-C1) or to smooth muscle myosin, the actin-activated MgATPase activity of HMM II-B2 is not significantly increased from a low, basal level by phosphorylation of the 20 kDa myosin light chain (MLC-20). Moreover, although HMM II-B2 can bind to actin in the absence of ATP and is released in its presence, it cannot propel actin in the sliding actin filament assay following MLC-20 phosphorylation. Unlike HMM II-B2, the actin-activated MgATPase activity of a chimeric HMM with the 21-amino acid II-B2 sequence inserted into the homologous location in the heavy chain of HMM II-C is increased following MLC-20 phosphorylation. This indicates that the effect of the II-B2 insert is myosin heavy chain specific.  相似文献   

16.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

17.
Smooth muscle myosin has two reactive thiols located near the C-terminal region of its motor domain, the “converter”, which rotates by ∼70° upon the transition from the “nucleotide-free” state to the “pre-power stroke” state. The incorporation rates of a thiol reagent, 5-(((2-iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), into these thiols were greatly altered by adding ATP or changing the myosin conformation. Comparisons of the myosin structures in the pre-power stroke state and the nucleotide-free state explained why the reactivity of both thiols is especially sensitive to a conformational change around the converter, and thus can be used as a sensor of the rotation of the converter. Modeling of the myosin structure in the pre-power stroke state, in which the most reactive thiol, “SH1”, was selectively modified with IAEDANS, revealed that this label becomes an obstacle when the converter completely rotates toward its position in the pre-power stroke state, thus resulting in incomplete rotation of the converter. Therefore, we suggest that the limitation of the converter rotation by modification causes the as-yet unexplained phenomena of SH1-modified myosin, including the inhibition of 10S myosin formation and the losses in phosphorylation-dependent regulation of the basic and actin-activated Mg-ATPase activities of myosin.  相似文献   

18.
Two methods are described for the estimation of microgram amounts of methionine byreaction with chloramine-T. The methionine may either be titrated and the end point determined spectrophotometrically at 246 nm, or it may be estimated colorimetrically from the conversion of nitrothiobenzoate to 5,5′-dithiobis(2-nitrobenzoic acid) (Y. Schecter, Y. Burstein, and A. Patchornik, 1975,Biochemistry14, 4497–4502) by chloramine-T remaining after oxidation of methionine to methionine sulfoxide by a known excess of reagent.  相似文献   

19.
20.
Cadmium-113 nuclear magnetic resonance (113Cd nmr) was used to elucidate the structural properties of the cadmium binding sites in human liver metallothionein. The isotopically labeled 113Cd-metallothionein was prepared by the in vitro exchange of the native metals (greater than 94% zinc) for 113CdCl2 during isolation. The two isoproteins, MT-1 and MT-2, showed 113Cd nmr resonances in the chemical shift range 610–670 ppm. The multiplet structure of the resonances is due to two bond scalar interactions between adjacent 113Cd ions linked by cysteine thiolate ligands. Homonuclear 113Cd decoupling experiments allowed the determination of the metal cluster structure, which, similar to the rabbit liver metallothionein, consists of a four- and a three-metal cluster designated cluster A and cluster B, respectively. Chemical shift similarities in the 113Cd nmr spectra of the human, rabbit and calf liver MT-1 and MT-2 are observed, especially for cluster A. Small variations in chemical shifts are explained in terms of differences in the primary structure between the two human isoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号