首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pKa of the adsorbate, and Van der Waals interactions.  相似文献   

2.
Rape alcohol dehydrogenase is competitively inhibited with respect to NAD by nicotinamide, as well as by compounds containing adenine (adenine, adenosine, AMP, ADP, ATP). Adenine and adenosine are bound more firmly to the enzyme than nicotinamide. The two types of compound, as component parts of the NAD coenzyme, are bound to different sites on the enzyme. Adenine and adenosine compete for the adenine nucleotide bonding site, but they do not compete for the o-phenanthroline bonding site. Nicotinamide competes with o-phenanthroline for the binding site at which the metal is apparently present.  相似文献   

3.
The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination.  相似文献   

4.
Treatment of BALB/c-3T3 mouse fibroblasts with 3′-led to a rapid accumulation of 3′-phosphates and the kinetics of this process has been determined. Concomitant with accumulation of these compounds, the adenine ribonucleotide pool was reduced. The kinetics of the two processes suggested that they were tightly coupled. The inhibitory effect of relatively high concentrations of coformycin indicated that IMP was an intermediate in the catabolic pathway. Similar experiments with Ehrlich ascites tumor cells were performed in Ringer-Hepes solution at pH 6.5 or 7.5 and with varying concentrations of orthophosphate. The experiments were performed with cells where ATP was [3H]-. This allowed the determination of the catabolism of adenine ribonucleotides to labeled nucleosides under conditions where added adenosine was phosphorylated. The results showed that at low phosphate concentration (5.8 mM) at pH 6.5 adenosine may be phosphorylated at a rate that was completely balanced to the concomitant catabolism of adenine ribonucleotides; that is, there was apparently a tight kinetic coupling between anabolism of adenosine and catabolism of adenine ribonucleotides. With 3′-a corresponding effect was obtained although the apparent coupling between phosphorylation of 3′-and catabolism of adenine ribonucleotides was not complete. When experiments were performed at the same pH but at high concentration of phosphate (45 mM) there was in contrast no coupling between the two processes; that is, ATP was present in constant amounts while 3′-phosphates accumulated at a high rate. In experiments with adenosine under these conditions there was still some although a relatively limited degree of apparent coupling between phosphorylation of adenosine and catabolism of adenine ribonucleotides. In both lines of cells used and with both adenosine and 3′-, the main products of the catabolism of adenine ribonucleotides were inosine and hypoxanthine. With 3′-there was in addition (about 20%) formation of xanthosine, suggesting that IMP dehydrogenase had also been activated. These results lead to the suggestion that adenosine (or 3′-) may be phosphorylated in two ways. 1) Phosphorylation may depend on an adenosine kinase unrelated to catabolism of adenine ribonucleotides. 2) Phosphorylation may be tightly coupled to catabolism of adenine ribonucleotides. A nucleoside phosphotransferase may catalyze the transfer of a phosphoryl group from IMP to adenosine (or 3′-) to form AMP (or 3′-) and inosine, a process that may be tightly coupled to an AMP deaminase reaction. The IMP formed in the latter reaction may not be released but transferred to the phosphotransferase. In contrast, the AMP formed in the phosphotransferase reaction should be in equilibrium with soluble AMP. It is assumed that a physical complex may exist, possibly in a membrane bound form, between AMP deaminase and the nucleoside phosphotransferase. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The adsorption of nucleotides and polynucleotides on montmorillonite clay   总被引:2,自引:2,他引:0  
The binding of adenine derivatives to Na(+)-montmorillonite increases in the order 5'AMP, 3'-AMP, 5'ADP < adenosine < purine, adenine. With the exception of cytosine, cytosine derivatives bind less strongly than the corresponding adenine derivatives in the order 5'-CMP < cytidine < cytosine. There is little difference in the binding of uracil derivatives and these compounds bind less strongly than the corresponding adenine analogs. It is concluded that the adenine ring in adenine derivatives is protonated by the acidic montmorillonite surface and binding is a consequence of the electrostatic interaction between the protonated base and the negative charges on the surface of the montmorillonite. Different binding trends were observed with Cu(2+)-montmorillonite with AMP binding more strongly than adenosine and UMP binding more strongly than uridine. It is concluded that ligation to the Cu2+ is a major force in the binding of nucleotides to Cu(2+)-montmorillonite and are not readily washed from the clay. Factors contributing to the binding are discussed. Watson-Crick hydrogen bonding of 5'-AMP to poly(U) and 5'GMP to poly(C) was observed when the homopolymers are bound to the surface of the clay. No association of 5'-UMP to poly(U) bound to clay was detected. The possible role of montmorillonite clays in the prebiotic formation of RNA is discussed.  相似文献   

6.
F E Evans  R H Sarma 《Biopolymers》1974,13(10):2117-2132
Proton magnetic resonance spectra of 5′AMP were taken in the concentration range of 0.001–2.2M. The concentration profiles of all the nonexchangeable protons were determined. The data for 5′AMP was compared to those of adenine, adenosine, and poly(A). Theoretically computed isoshielding lines of the adenine moiety were used to qualitatively predict a preferred stacking geometry of 5′AMP in aqueous solution. It is concluded that 5′AMP at pH 8 forms multistacked aggregates at high concentration levels and that a preferred orientation is such that the bases are aligned face to back with considerable, though less than 100%, base overlap; and that the ribose moieties of adjacent molecules are near one another with the phosphate groups well separated. Mn(II) ion binding studies show that the stacks are not restricted to one unique orientation type. Specific evidence is given showing that base-stacking orientations in the solid state may in some cases be considerably different from that in aqueous solution, due in part to numerous hydrogen bonding differences, and this is shown to be the case for base-stacked adenosine. In the case of 5′AMP the stacking orientations between the solid and liquid states are also different, except in this comparison the solid-state structure carries a positive charge.  相似文献   

7.
The mechanism for glycogen synthesis stimulation produced by adenosine, fructose, and glutamine has been investigated. We have analyzed the relationship between adenine nucleotides and glycogen metabolism rate-limiting enzymes upon hepatocyte incubation with these three compounds. In isolated hepatocytes, inhibition of AMP deaminase with erythro-9-(2-hydroxyl-3nonyl)adenine further increases the accumulation of AMP and the activation of glycogen synthase and phosphorylase by fructose. This ketose does not increase cyclic AMP or the activity of cyclic AMP-dependent protein kinase. Adenosine raises AMP and ATP concentration. This nucleotide also activates glycogen synthase and phosphorylase by covalent modification. The correlation coefficient between AMP and glycogen synthase activity is 0.974. Nitrobenzylthioinosine, a transport inhibitor of adenosine, blocks (by 50%) the effect of the nucleoside on AMP formation and glycogen synthase but not on phosphorylase. 2-Chloroadenosine and N6-phenylisopropyladenosine, nonmetabolizable analogues of adenosine, activate phosphorylase (6-fold) without increasing the concentration of adenine nucleotides or the activity of glycogen synthase. Cyclic AMP is not increased by adenosine in hepatocytes from starved rats but is in cells from fed animals. [Ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA) blocks by 60% the activation of phosphorylase by adenosine but not that of glycogen synthase. Glutamine also increases AMP concentration and glycogen synthase and phosphorylase activities, and these effects are blocked by 6-mercaptopurine, a purine synthesis inhibitor. Neither adenosine nor glutamine increases glucose 6-phosphate. It is proposed that the observed efficient glycogen synthesis from fructose, adenosine, and glutamine is due to the generation of AMP that activates glycogen synthase probably through increases in synthase phosphatase activity. It is also concluded that the activation of phosphorylase by the above-mentioned compounds can be triggered by metabolic changes.  相似文献   

8.
Intact hepatopancreocytes were obtained from hibernating or active purinotelic snails, H. pomatia (Gastropoda). When incubated with [14C]glycine or [14C]formate, they synthesized de novo purine compounds, including also adenylates, adenosine and adenine. Hepatopancreocytes resynthesized also adenylates and other purine compounds from [3H]adenine or from [3H]adenosine split by the H. pomatia cell enzyme to adenine; the resynthesis of ADP+ATP was proportional to adenine concentration. Thus all reactions of the postulated adenine cycle: AMP leads to adenosine leads to adenine leads to AMP occur in the intact hepatopancreocytes; this cycle could probably be responsible for maintenance of the high level of adenylates during winter sleep.  相似文献   

9.
Recently, we have shown that erythrocytes obtained from patients with chronic renal failure (CRF) exhibited an increased rate of ATP formation from adenine as a substrate. Thus, we concluded that this process was in part responsible for the increase of adenine nucleotide concentration in uremic erythrocytes. There cannot be excluded however, that a decreased rate of adenylate degradation is an additional mechanism responsible for the elevated ATP concentration. To test this hypothesis, in this paper we compared the rate of adenine nucleotide breakdown in the erythrocytes obtained from patients with CRF and from healthy subjects.Using HPLC technique, we evaluated: (1) hypoxanthine production by uremic RBC incubated in incubation medium: (a) pH 7.4 containing 1.2 mM phosphate (which mimics physiological conditions) and (b) pH 7.1 containing 2.4 mM phosphate (which mimics uremic conditions); (2) adenine nucleotide degradation (IMP, inosine, adenosine, hypoxanthine production) by uremic RBC incubated in the presence of iodoacetate (glycolysis inhibitor) and EHNA (adenosine deaminase inhibitor). The erythrocytes of healthy volunteers served as control.The obtained results indicate that adenine nucleotide catabolism measured as a hypoxanthine formation was much faster in erythrocytes of patients with CRF than in the cells of healthy subjects. This phenomenon was observed both in the erythrocytes incubated at pH 7.4 in the medium containing 1.2 mM inorganic phosphate and in the medium which mimics hyperphosphatemia (2.4 mM) and metabolic acidosis (pH 7.1). The experiments with EHNA indicated that adenine nucleotide degradation proceeded via AMP-IMP-Inosine-Hypoxanthine pathway in erythrocytes of both patients with CRF and healthy subjects. Iodoacetate caused a several fold stimulation of adenylate breakdown. Under these conditions: (a) the rate of AMP catabolites (IMP + inosine + adenosine + hypoxanthine) formation was substantially higher in the erythrocytes from patients with CRF; (b) in erythrocytes of healthy subjects degradation of AMP proceeded via IMP and via adenosine essentially at the same rate; (c) in erythrocytes of patients with CRF the rate of AMP degradation via IMP was about 2 fold greater than via adenosine.The results presented in this paper suggest that adenine nucleotide degradation is markedly accelerated in erythrocytes of patients with CRF.  相似文献   

10.
ADENOSINE (0.5 MM) added to hepatocyte suspensions increased the intracellular concentration of ATP and total adenine nucleotides within 60 min up to three-fold. 2. Adenosine at 0.5 mM inhibited gluconeogenesis from lactate by about 50%. At higher adenosine concentrations the inhibition was less. There was no strict parallelism between the time-course of the increase of the adenine nucleotide content and the time-course of the inhibition of gluconeogenesis from lactate. 3. Adenosine abolished the accelerating effects of oleate and dibutyryl cyclic AMP on gluconeogenesis from lactate. 4. Gluconeogenesis was no significant effect of adenosine with fructose, dihydroxyacetone or glycerol. With asparagine, adenosine caused anacceleration of glucose formation. 5. Adenosine incorporation into adenine nucleotides accounted for about 20% of the adenosine removal. 6. Inosine, hypoxanthine or adenine compared with adenosine gave relatively slight increases of adenine nucleotides. 7. Urea synthesis from NH4Cl under optimum conditions i.e. in the presence of ornithine, lactate and oleate, was also inhibited by adenosine. The inhibition increased with the adenosine concentration and was 65% at 4 mM-adenosine. Again there was no correlation between the degree of inhibition of urea synthesis and the increase in the adenine nucleotide content. 8. The basal O2 consumption, the increased O2 consumption on the addition of oleate and the rate of formation of ketone bodies were not affected by the addition of adenosine. The [beta-hydroxybutyrate]/[acetoacetate] ratio was increased by adenosine, provided that lactate was present. 9. The increase of the adenine nucleotide content of the hepatocytes on the addition of adenosine may be explained on the assumption that adenosine kinase is not regulated by feedback but by substrate supply.  相似文献   

11.

It has been proposed that clays could have served as key factors in promoting the increase in complexity of organic matter in primitive terrestrial and extraterrestrial environments. The aim of this work is to study the adsorption–desorption of two dicarboxylic acids, fumaric and succinic acids, onto clay minerals (sodium and iron montmorillonite). These two acids may have played a role in prebiotic chemistry, and in extant biochemistry, they constitute an important redox couple (e.g. in Krebs cycle) in extant biochemistry. Smectite clays might have played a key role in the origins of life. The effect of pH on sorption has been tested; the analysis was performed by UV–vis and FTIR-ATR spectroscopy, X-ray diffraction and X-ray fluorescence. The results show that chemisorption is the main responsible of the adsorption processes among the dicarboxylic acids and clays. The role of the ion, present in the clay, is fundamental in the adsorption processes of dicarboxylic acids. These ions (sodium and iron) were selected due to their relevance on the geochemical environments that possibly existed into the primitive Earth. Different mechanisms are proposed to explain the sorption of dicarboxylic acids in the clay. In this work, we propose the formation of complexes among metal cations in the clays and dicarboxylic acids. The organic complexes were probably formed in the prebiotic environments enabling chemical processes, prior to the appearance of life. Thus, the data presented here are relevant to the origin of life studies.

  相似文献   

12.
The xanthine-requiring mutants defective in adenine deaminase (adenase) derived from a Bacillus strain accumulate much adenosine. The mechanism of adenosine production was investigated. Limitation of the guanine-related substances in the fermentation medium facilitated the adenosine accumulation, but the excess of those suppressed it.Metabolic regulation of the purine nucleotide biosynthesis was supposed to be released from both feedback inhibition and repression by limiting the concentration of guanine-related substances in the cells caused by xanthine-requirement. Deficiency in the deaminase activities of adenine, adenosine and AMP and the weak adenosine phosphorylase activity contributed to adenosine accumulation. No apparent changes were observed in the adenylosuccinate synthetase activity and the dephosphorylation activity of AMP compared with the wild strain.  相似文献   

13.
The effects of adenine and (or) guanosine concentration on the accumulation of inosine, xanthosine, adenosine and succino-adenosine were studied with various purine auxotrophs of Bacillus subtilis K strain. Genetical derepression of the common pathway enzymes resulted in increase in the accumulation of inosine, xanthosine and adenosine. Co-operative repression system of a common pathway enzyme, succino-AMP lyase with respect to adenine and guanosine, was confirmed under the condition of the accumulation test. From these and the relating other studies it was concluded that the synthesis of AMP was regulated mainly by the inhibition of PRPP amidotransferase by AMP and secondly by the repression of the common pathway enzymes by adenine and guanosine, that the synthesis of GMP was regulated mainly by the inhibition and repression of IMP dehydrogenase by guanine derivatives and that GMP was synthesized in preference to AMP at the branch point, IMP.  相似文献   

14.
Catabolism of adenine nucleotides in suspension-cultured plant cells   总被引:3,自引:0,他引:3  
Profiles of the catabolism of adenine nucleotides in cultured plant cells were investigated. Adenine nucleotides, prelabelled by incubation of suspension-cultured Catharantus roseus cells with [8-14C]adenosine, were catabolized rapidly and most of the radioactivity appeared in 14CO2. Allantoin and allantoic acid, intermediates of the oxidative catabolic pathway of purines, were temporarily labelled. When the cells, prelabelled with [8-14C]adenosine, were incubated with high concentrations of adenosine, the rate of catabolism of adenine nucleotides increased. The results suggest that the relative rate of catabolism of adenine nucleotides is strongly dependent on the concentration of adenine nucleotides in the cells. Studies using allopurinol, coformycin and tiazofurin, inhibitors of enzymes involved in purine metabolism, suggest that participation of AMP deaminase and xanthine oxidoreductase in the catabolism of adenine nucleotides in plant cells. AMP deaminase was found in extracts from C. roseus cells and its activity increased significantly in the presence of ATP. In contrast, no adenosine deaminase or adenine deaminase activity was detected. Qualitative differences in the catabolic activity of AMP were observed between suspension-cultured cells from different species of plants.  相似文献   

15.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

16.
Release of AMP and adenosine from rat heart mitochondria was studied. The rate of appearance of extramitochondrial adenosine was independent of the extramitochondrial phosphate concentration between 5 and 20 mM. In the absence of exogenous, respiratory substrates or in the presence of glutamate/malate plus rotenone, the rate of appearance of adenosine was relatively low when phosphate was not added. The appearance of extramitochondrial AMP + adenosine was found to be directly proportional to the extra-mitochondrial phosphate concentration. Zn2+ (10 mM) decreased the rate of adenosine appearance by 90% and increased the rate of AMP appearance 6-fold. The mitochondrial preparations dephosphorylated exogenous AMP; this activity was inhibited by 10 mM Zn2+. We conclude that the adenosine appearing in the extramitochondrial space was not due to a direct release from the matrix, but instead was due to adenine nucleotide release with subsequent conversion to adenosine in the extramitochondrial space.  相似文献   

17.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

18.
Cyclic AMP accumulates in cerebral cortical slices from the C57B1/6J mouse incubated with the following stimulatory agents: norepinephrine, adenosine, veratridine and adenosine-biogenic amine combinations. The results with slices labelled with radioactive adenine or adenosine provide evidence for the existence of distinct functional compartments of adenine nuclcotides which serve as precursors of cyclic AMP on stimulation with specific agents. Thus, in slices labelled with [14C]adenine or [3H]adenosine the ratio of [14C] to [3H]cyclic AMP was dependent on the stimulatory agent; with veratridinc the ratio was 1.4 while with adenosine the ratio was 3.0. In addition, a greater than 2-fold difference in the ratio of endogenous/radioactive cyclic AMP was observed in adenine or adenosine-labelled slices after incubation with veratridine, norepinephrine, adenosine or adenosine-amine combinations; the lowest ratios after stimulation with veratridine and the highest after adenosine or adenosine-amine combinations. The high ratio observed with adenosine was in part due to a quite marked incorporation of the stimulant, adenosine, into the accumulating cyclic AMP. Such distinct functional compartments of cyclic AMP precursors may represent different cell types and/or morphological entities within one cell type.  相似文献   

19.
Two model compounds were used to investigate sorptive phenomena of a silty-sand soil under single and binary solute systems at different concentrations. In the sorption isotherms, the presence of phenan-threne (PHE) exhibited a statistically significant (P<0.05) sorption competition over pyrene (PYR), regardless of the concentration. PYR influenced the PHE isotherms only when it was present at 15?mg/L. The concentration dependence in sorption competition was only evident for the more hy-drophobic PYR. In the presence of PHE, the fraction of desorbed PYR was significantly increased with an increase in PYR concentration. PHE desorption enhancement was the most observable with the higher initial concentration (15?mg/L). However, the presence of PYR did not affect PHE desorption. This study found that, based on equivalent solid mass, soils containing only clay minerals sorbed 12.2% more PHE than soils with only soil organic matter (SOM) for 3?mg/L PHE. Clay minerals also impacted desorption as evidenced by a 65% decrease in desorbed PYR fraction compared with when the soil only contained SOM. The dissolved organic matter (DOM) amendment did not increase desorption. Instead, PHE desorption was significantly inhibited by the added DOM. For this study, co-sorption was found to be the mechanism for the inhibited desorption.  相似文献   

20.
The uptake of adenosine by an adenosine kinase deficient variant of C1300 murine neuroblastoma cells has been studied in the absence and in the presence of erythro-9-(2-hydroxy-3-nonyl)adenine, a potent adenine deaminase inhibitor. Although 100 micro M inhibitor completely blocks the metabolism of adenosine under the conditions studied, the uptake of adenosine is concentrative, i.e., the intracellular adenosine concentration exceeds the extracellular concentration. This concentrative effect decreases as the concentration of adenosine increases and is hypothesized to be due to the binding of adenosine to an intracellular component. Despite this concentrative effect, we believe that the kinetics of uptake, as determined in experiments with short (10-20 s) uptake periods, reflect the kinetics of adenosine transport by a facilitated diffusion process. This nucleoside transport system appears to be nonspecific in that the transport of adenosine is competitively antagonized by thymidine. It does not appear to be necessary to inhibit adenosine deaminase in order to study transport in these cells as the Km for transport is not affected by the presence of erythro-9-(2-hydroxy-3-nonyl)adenine. However, erythro-9-(2-hydroxy-3-nonyl)adenine does depress the V for transport. This effect of the inhibitor is probably not due to the inhibition of adenosine deaminase as the transport of thymidine is similarly affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号