首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In this study sulfite (?SO3?) and sulfate (SO4??) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, phorbol 12-myristate 13-acetate-stimulated neutrophils produced DMPO–sulfite anion radical, –superoxide, and –hydroxyl radical adducts. The last adduct probably resulted, in part, from the conversion of DMPO–sulfate to DMPO–hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4??) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation.  相似文献   

2.
《Free radical research》2013,47(11):1300-1310
Abstract

Hypotaurine and cysteine sulfinic acid are known to be readily oxidized to the respective sulfonates, taurine and cysteic acid, by several oxidative agents that may be present in biological systems. In this work, the relevance of both the carbonate anion and nitrogen dioxide radicals in the oxidation of hypotaurine and cysteine sulfinic acid has been explored by the peroxidase activity of Cu,Zn superoxide dismutase (SOD) and by pulse radiolysis. The extent of sulfinate oxidation induced by the system SOD/H2O2 in the presence of bicarbonate (CO3?– generation), or nitrite (?NO2 generation) has been evaluated. Hypotaurine is efficiently oxidized by the carbonate radical anion generated by the peroxidase activity of Cu,Zn SOD. Pulse radiolysis studies have shown that the carbonate radical anion reacts with hypotaurine more rapidly (k = 1.1 × 109 M?1s?1) than nitrogen dioxide (k = 1.6 × 107 M?1s?1). Regarding cysteine sulfinic acid, it is less reactive with the carbonate radical anion (k = 5.5 × 107 M?1s?1) than hypotaurine. It has also been observed that the one-electron transfer oxidation of both sulfinates by the radicals is accompanied by the generation of transient sulfonyl radicals (RSO2?). Considering that the carbonate radical anion could be formed in vivo at high level from bicarbonate, this radical can be included in the oxidants capable of performing the last metabolic step of taurine biosynthesis. Moreover, the protective effect exerted by hypotaurine and cysteine sulfinate on the carbonate radical anion-mediated tyrosine dimerization indicates that both sulfinates have scavenging activity towards the carbonate radical anion. However, the formation of transient reactive intermediates during sulfinate oxidation by carbonate anion and nitrogen dioxide radical may at the same time promote oxidative reactions.  相似文献   

3.
Reaction centers were isolated from a carotenoidless mutant of Rhodopseudomonas gelatinosa by hydroxyapatite chromatography of purified chromatophores treated with lauryl dimethyl amine oxide. Absorption spectra and spectra of light-induced absorbance changes are similar to those of reaction centers from Rhodopseudomonas sphaeroides. The ratio of absorbance at 280 nm to that at 799 nm was 1.8 in the purest preparations. The extinction coefficient at the 799 nm absorption maximum was estimated to be 305 ± 20 mM?1 · cm?1. The molecular weight based on protein and chromophore assays was found to be 1.5 · 105; the reaction center protein accounted for 6% of the total membrane protein. These reaction centers contained no cytochrome and showed just two components of apparent molecular weights 33 000 and 25 000 in polyacrylamide gel electrophoresis. The chromatophores contained 42 molecules of antenna bacteriochlorophyll for each reaction center.  相似文献   

4.
《Free radical research》2013,47(4-6):351-358
n-Propyl gallate reacts with the superoxide radical anion in aqueous solution (k = 5.1 × 105 mol?1 dm3s?1). The spectrum of the transient species so formed has been measured (absorbance maximum at 550nm, ? = 1360mol?1dm3cm?1). Electron or H atom transfer processes as well as proton abstraction have been excluded as possible mechanisms, and it is proposed that an addition reaction takes place.  相似文献   

5.
Eosinophil peroxidase (EPO) is an abundant heme protein in eosinophils that catalyzes the formation of cytotoxic oxidants implicated in asthma, allergic inflammatory disorders, and cancer. It is known that some proteins with peroxidase activity (horseradish peroxidase and prostaglandin hydroperoxidase) can catalyze oxidation of bisulfite (hydrated sulfur dioxide), leading to the formation of sulfur trioxide anion radical (·SO3). This free radical further reacts with oxygen to form peroxymonosulfate anion radical (O3SOO·) and the very reactive sulfate anion radical (SO4˙̄), which is nearly as strong an oxidant as the hydroxyl radical. However, the ability of EPO to generate reactive sulfur radicals has not yet been reported. Here we demonstrate that eosinophil peroxidase/H2O2 is able to oxidize bisulfite, ultimately forming the sulfate anion radical (SO4˙̄), and that these reactive intermediates can oxidize target proteins to protein radicals, thereby initiating protein oxidation. We used immuno-spin trapping and confocal microscopy to study protein oxidation by EPO/H2O2 in the presence of bisulfite in a pure enzymatic system and in human promyelocytic leukemia HL-60 clone 15 cells, maturated to eosinophils. Polyclonal antiserum raised against the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) detected the presence of DMPO covalently attached to the proteins resulting from the DMPO trapping of protein free radicals. We found that sulfite oxidation mediated by EPO/H2O2 induced the formation of radical-derived DMPO spin-trapped human serum albumin and, to a lesser extent, of DMPO-EPO. These studies suggest that EPO-dependent oxidative damage may play a role in tissue injury in bisulfite-exacerbated eosinophilic inflammatory disorders.  相似文献   

6.
Disulfide bond reduction by the CO2.- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under gamma-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pKa around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO2.- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO2.- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, [symbol: see text], appeared to be the major protein radical species formed under acidic conditions. The main decay path of [symbol: see text] consisted of the rapid formation of a thiyl radical intermediate [symbol: see text] in equilibrium with the closed, cyclic form. The thiyl radical was subsequently reduced to the sulfhydryl level [symbol: see text] on reaction with formate, generating 1 mol of the CO2.- radical, thus propagating the chain reaction. The disulfide radical anion [symbol: see text] at pH 8 decayed through competing intramolecular and/or intermolecular routes including disproportionation, protein-protein cross-linking, electron transfer with tyrosine residues, and reaction with sulfhydryl groups in prereduced systems. Disproportionation and cross-linking were observed with the riboflavin-binding protein solely. Formation of the disulfide radical cation [symbol: see text], phenoxyl radical Tyr-O. disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical.  相似文献   

7.
Repair activities of thymine radical anion by echinocoside, isolated from Pedicularis plicata. were studied using pulse radiolysis technique. The thymine radical anion was produced by the reaction of hydrated electron with thymine. Echinocoside. one of the polyphenols of phenylpropanoid glycoside, was added to the thymine aqueous solution saturated with N2. Kinetic analysis by transient absorption spectrum showed that thymine radical anion was formed at first, and then after several decades of microseconds of pulse radiolysis. the spectrum of thymine radical anion was changed to that of echinocoside radical anion. The evidence indicated that thymine radical anion was repaired through one-electron-transfer between the DNA base radical anion and echinocoside. The rate constant of electron transfer by echinocoside was 1.45× 109 dm3 · mol1 · s 1.  相似文献   

8.
《Free radical research》2013,47(3):159-168
N-phenylacetyl dehydroalanines are captodative olefins. They inhibit two processes mediated by superoxide anion (O2-) in a concentration dependent manner: reduction of NBT to blue formazan and oxidation of epinephrine to adrenochrome. They also inhibit in a dose related way the degradation of deoxyribose produced during either the Fenton reaction or the radiolysis of water, which are the two experimental sources of hydroxyl radical (HO?) production. Based on the results obtained with superoxide dismutase, mannitol, thiourea, and uric acid, we postulate that these competitive inhibitory effects suggest a reaction between the dehydroalanine derivatives and the two oxygen derived radicals. Hydroxyl free radical is scavenged more efficiently than superoxide anion. Substitution of the phenyl ring by methoxy groups does not modify significantly the activity. These molecules possess three target active sites which can react with free radicals.  相似文献   

9.
Oxymyoglobin reacts with imidazole, substituted imidazoles, and hydroquinone to give metmyoglobin. The kinetics of these reactions have been studied. The rates are first order in both reactants, and second-order rate constants are reported. At pH 8.2, k1 for imidazole is 2.5 ± 0.3 × 10?3 M?1 sec?1 and for hydroquinone is 4 ± 0.4 × 10?1 M?1 sec?1. The rates are independent of pH for imidazole but increase rapidly with pH for hydroquinone. The mechanism for all these reactions is thought to involve the two-electron reduction of molecular oxygen to peroxide with concurrent oxidation of both the protein and the reactant. An analogous mechanism has been suggested previously [1] for the reaction of oxyhemoglobin with hydroquinone. It has previously been shown [6] that imidazole can mediate the transfer of electrons to heme proteins by forming a transient reduced radical. The present results indicate that it can also form a transient oxidized radical under mild conditions. This dual capability may be important in biological electron-transfer processes.  相似文献   

10.
Reaction centers have been purified from chromatophores of Rhodopseudomonas viridis by treatment with lauryl dimethyl amine oxide followed by hydroxyapatite chromatography and precipitation with ammonium sulfate. The absorption spectrum at low temperature shows bands at 531 and 543 nm, assigned to two molecules of bacteriopheophytin b. The 600 nm band of bacteriochlorophyll b is resolved at low temperature into components at 601 and 606.5 nm. At room temperature the light-induced difference spectrum shows a negative band centered at 615 nm, where the absorption spectrum shows only a weak shoulder adjacent to the 600 nm band. The fluorescence spectrum shows a band at 1000 nm and no fluorescence corresponding to the 830 nm absorption band. Two molecules of cytochrome 558 and three of cytochrome 552 accompany each reaction center. The differential extinction coefficient (reduced minus oxidized) of cytochrome 558 at 558 nm was estimated as 20 ± 2 mM?1 · cm?1 through a coupled reaction with equine cytochrome c. The extinction coefficient of reaction centers at 960 nm was determined to be 123 ± 25 mM?1 · cm?1 by measuring the light-induced bleaching of P-960 and the coupled oxidation of cytochrome 558. The corresponding extinction coefficient at 830 nm is 300 ± 65 mM?1 · cm?1. The absorbance ratio a280nma830nm in our preparations was 2.1, and there was 190 kg protein per mol of reaction centers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed three major components of apparent molecular weights 31 000, 37 000 and 41 000.  相似文献   

11.
Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll BA at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P+H A ? state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P+B A ? HA and P+BAH A ? states. The data give grounds for assuming that the value of the energy difference between the states P*, P+B A ? HA, and P+BAH A ? at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll BA is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P+B A ? state with respect to P*.  相似文献   

12.
ABSTRACT

This study aimed to investigate the unique antioxidative effects of Japanese moringa products, herbal leaf tea and stem tea, using established free radical assays, focusing on superoxide anion (O2?) radical generation systems. Hot-water extracts from moringa teas resulted in different but lower scavenging activities than Trolox in four synthetic free radical models. Interestingly, these extracts further showed higher O2? radical scavenging effects than Trolox in the phenazine methosulfate-NADH-nitroblue tetrazolium and xanthine oxidase assay systems. Incubating human neutrophils in the presence of these tea extracts rather than Trolox effectively suppressed cellular O2? radical generation. Among the eight known phenolic constituents of moringa leaves, caffeic acid and chlorogenic acid may be responsible for the O2specific radical scavenging capacity stronger than that of Trolox. These results suggest that moringa herbal teas are a good source of natural antioxidants for preventing O2? radical-mediated disorders.

Abbreviations: O2?: superoxide anion; ROS: reactive oxygen species; H2O2: hydrogen peroxide; XOD: xanthine oxidase; DPPH: 1,1-diphenyl-2-picrylhydrazyl; ABTS+: 2,2′-azinobis(2-ethylbenzothiazoline-6-sulfonic acid) cation; CPZ+: chlorpromazine cation; PMS: phenazine methosulfate; NBT: nitroblue tetrazolium; PMA: phorbol 12-myristate 13-acetate  相似文献   

13.
The interaction of the radicals OH?, t-BuO?, eaq?, CO2XXX and O2XXX with the copper oxidase. laccase. from Polyporus, has been studied by the pulse-radiolysis technique. Each of these radicals formed transient adducts with a broad absorption maximum around 310 nm. Analysis of the optical properties and of the very fast rates of formation of these compounds shows that each radical interacts with a limited number of sites on the polypeplide part of the protein amongst R-S-S-R. histidine and aromatic residues. Interaction with the carbonyl group of some of the peptide bonds is also possible. The few target sites are probably hit simultaneously and electron transfer between these sites may also occur. In all cases, in a subsequent step, intramolecular electron transfer from the polypeptide radical adducts leads to a partial reduction of the blue type-1 Cu2+ with rates varying between 103 and 104 s?1. Further reduction of the type-1 Cu2+ occurs through a slow intermolecular reaction between two laccase radical transient adducts. In the case of COXXX2 and OXXX2, this slow reduction could alternatively be due to an intermolecular reaction between laccase and COXXX2 or OXXX2. The oxidant radicals OH?. BrXXX2 and (SCN)XXX2, which formed radical adducts with fully ascorbate-reduced laccase, did not induce any type-1 copper reoxidation.  相似文献   

14.
Radiation chemical studies of thioesculetin (1), a thioketone derivative of coumarin, were performed by both pulse radiolysis technique and DFT calculations. Hydroxyl (?OH) radical reaction with 1 resulted transients absorbing at 320, 360 and 500?nm. To identify the nature of the transients, the reaction was studied with specific one-electron oxidant (N3?) radical, where 360?nm band was absent. The transient absorption at 500?nm was concentration-dependent. The overall impression for ?OH radical reaction was that the transient absorbing at 320, 360 and 500?nm was due to sulphur centred monomer radical, hydroxysulfuranyl and dimer radical of 1 respectively. The equilibrium constant between the monomer to dimer radical was 3.75?×?104 M?1. From the transients’ redox nature, it was observed that 57 and 24% of ?OH radical yielded to oxidising and reducing products respectively. Further, the product analysis by HPLC suggested that the dimer radical disproportionate to esculetin and thioesculetin. DFT energy calculation for all the possible transients revealed that dimer radical has the lowest energy. The HOMO of 1 and its monomer radical suggested that the electron density was localised on the sulphur atom. The bond length between the two sulphur atoms in dimer radical was 2.88 Å which was less than the van der Waals distance. Bond order between the two sulphur atoms was 0.55, suggesting that the bond was two centre three electron (2c–3e). From TD-DFT calculation, the electronic transition of dimer radical was at 479?nm which was in close agreement with the experimental value. The nature of the electronic transition was σ → σ* from a 2c???3e bond.  相似文献   

15.
The C? methyl group of methionine-29 of RNAase was enriched with 13C. The synthesis involved the reaction of RNAase with 13CH3I at pH 4. S-Methylmethionine-29 RNAase was recovered in 80% yield. This sulfonium derivative was subsequently demethylated with 0.1 M mercaptoethanol at pH 8.5, 25°C for 4 days. These conditions allowed the demethylation reaction to successfully compete with the reaction of the thiol with the four disulfide bridges in RNAase. After dialysis, concentration and chromatography, native RNAase with approx. 50% of its Met29 methyl groups enriched in 13C was recovered as was unreversed S-Methylmethionine-29 RNAase. Both proteins showed full enzymatic activity toward cytidine 2′:3′-cyclic monophosphate. 13C-methyl signals from enriched RNAase and the sulfonium derivative were observed at 13.8 and 26.7 ppm from TMS respectively. Preliminary denaturation studies with the methylated protein suggest that 13C enrichment of methionine methyl groups in RNAase will be a useful technique for following the unfolding transition at these sites of the protein.  相似文献   

16.
The formate radical (CO2-) reacts with ribonuclease A to form the cystine disulfide radical as one of the products. CO2- reacts with the riboflavin binding protein of chicken egg white with the ultimate product being the neutral flavin semiquinone. Formation of the disulfide radical in ribonuclease is slower than the reaction between protein and CO2-; formation of the flavin semiquinone in the riboflavin binding protein is slower than the protein-CO2- reaction. We conclude for both proteins that CO2- must reduce an as yet unidentified group or groups, which in turn reduce(s) the disulfide of RNase or the flavin of riboflavin binding protein. This conclusion is supported in the case of ribonuclease by the observation of a transient, broad absorption band centered between 350 and 370 nm. The CO2--initiated reductions of the disulfide in ribonuclease and the flavin in the riboflavin binding protein are mixed first- and second-order processes. We propose that the transfer of an electron from the unknown intermediate(s) to the final product involves both inter- and intramolecular paths between groups that may not be in van der Waals contact. With the hydrated electron, in contrast to CO2-, as reductant of the riboflavin binding protein, the anionic semiquinone is observed as an intermediate. The anionic semiquinone is then rapidly protonated, yielding the stable neutral semiquinone. From the reaction kinetics and protein concentration dependence, we conclude that a group or groups on the protein donate(s) a proton to the anionic semiquinone by both inter- and intramolecular paths.  相似文献   

17.
Aromatic amino acids play an important role in ultraviolet (UV)-induced photochemical reactions in proteins. In this work, we aim at gaining insight into the photochemical reactions induced by near-UV light excitation of aromatic residues that lead to breakage of disulfide bridges in our model enzyme, Fusarium solani pisi cutinase, a lipolytic enzyme. With this purpose, we acquired transient absorption data of cutinase, with supplemental experimental data on tryptophan (Trp) and lysozyme as reference molecules. We here report formation kinetics and lifetimes of transient chemical species created upon UV excitation of aromatic residues in proteins. Two proteins, lysozyme and cutinase, as well as the free amino acid Trp, were studied under acidic, neutral, and alkaline conditions. The shortest-lived species is assigned to solvated electrons (lifetimes of a few microseconds to nanoseconds), whereas the longer-lived species are assigned to aromatic neutral and ionic radicals, Trp triplet states, and radical ionic disulphide bridges. The pH-dependent lifetimes of each species are reported. Solvated electrons ejected from the side chain of free Trp residues and aromatic residues in proteins were observed 12 ns after excitation, reaching a maximum yield after ∼40 ns. It is interesting to note that the formation kinetics of solvated electrons is not pH-dependent and is similar in the different samples. On the other hand, a clear increase of the solvated electron lifetime is observed with increasing pH. This observation is correlated with H3O+ being an electron scavenger. Prolonged UV illumination of cutinase leads to a larger concentration of solvated electrons and to greater absorption at 410 nm (assigned to disulphide electron adduct RSSR •−), with concomitant faster decay kinetics and near disappearance of the Trp radical peak at 330 nm, indicating possible additional formation of TyrO formed upon reaction of Trp with Tyr residues. Prolonged UV illumination of cutinase also leads to a larger concentration of free thiol groups, known to originate from the dissociation of RSSR •−. Additional mechanisms that may lead to the near disappearance of Trp are discussed. Our study provides insight into one key UV-light-induced reaction in cutinase, i.e., light-induced disruption of disulphide bridges mediated by the excitation of aromatic residues. Knowledge about the nature of the formed species and their lifetimes is important for the understanding of UV-induced reactions in humans that lead to light-induced diseases, e.g., skin cancer and cataract formation.  相似文献   

18.
Peroxynitrite-Induced Alterations in Synaptosomal Membrane Proteins   总被引:8,自引:2,他引:6  
Abstract : Peroxynitrite (ONOO-) is a highly reactive, oxidizing anion with a half-life of <1 s that is formed by reaction of superoxide radical anion with nitric oxide. Several reports of ONOO- -induced oxidation of lipids, proteins, DNA, sulfhydryls, and inactivation of key enzymes have appeared. ONOO- has also been implicated as playing a role in the pathology of several neurodegenerative disorders, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis, among others. Continuing our laboratory's interest in free radical oxidative stress in brain cells in AD, the present study was designed to investigate the damage to brain neocortical synaptosomal membrane proteins and the oxidation-sensitive enzyme glutamine synthetase (GS) caused by exposure to ONOO-. These synaptosomal proteins and GS have previously been shown by us and others to have been oxidatively damaged in AD brain and also following treatment of synaptosomes with amyloid β-peptide. The results of the current study showed that exposure to physiological levels of ONOO- induced significant protein conformational changes, demonstrated using electron paramagnetic resonance in conjunction with a protein-specific spin label, and caused oxidation of proteins, measured by the increase in protein carbonyls. ONOO- also caused inactivation of GS and led to neuronal cell death examined in a hippocampal cell culture system. All these detrimental effects of ONOO- were successfully attenuated by the thiol-containing antioxidant tripeptide glutathione. This research shows that ONOO- can oxidatively modify both membranous and cytosolic proteins, affecting both their physical and chemical nature. These findings are discussed with reference to the potential involvement of ONOO- in AD neurodegeneration.  相似文献   

19.
The specific role of the chloride anion (Cl?) as a signalling effector or second messenger has been increasingly recognized in recent years. It could represent a key factor in the regulation of cellular homeostasis. Changes in intracellular Cl? concentration affect diverse cellular functions such as gene and protein expression and activities, post‐translational modifications of proteins, cellular volume, cell cycle, cell proliferation and differentiation, membrane potential, reactive oxygen species levels, and intracellular/extracellular pH. Cl? also modulates functions in different organelles, including endosomes, phagosomes, lysosomes, endoplasmic reticulum, and mitochondria. A better knowledge of Cl? signalling could help in understanding the molecular and metabolic changes seen in pathologies with altered Cl? transport or under physiological conditions. Here we review relevant evidence supporting the role of Cl? as a signalling effector.  相似文献   

20.
We studied the adsorption of cyanuric fluoride (CF) and s-triazine (ST) molecules on the surface of pristine as well as Al-doped graphenes using density functional theory calculations. Our results reveal low adsorption on the surface of pristine graphene; but by modification of surface using aluminium, resulted Al-doped graphene becomes more reactive towards both CF and ST molecules. We aimed to focus on the adsorption energy, electronic structure, charge analysis, density of state and global indices of each system upon adsorption of CF and ST molecules on the above-mentioned surfaces. Our calculated adsorption energies for the most stable position configurations of CF and ST on Al-doped graphene were ?76.53 kJ mol?1 (?57.45 kJ mol?1 BSSE corrected energy) and ?115.55 kJ mol?1 (?86.87 kJ mol?1 BSSE corrected energy), respectively, which point to the chemisorption process. For each CF and ST molecule, upon adsorption on the surface of Al-doped graphene, the band gap of HOMO-LUMO was reduced considerably and it becomes a p-type semiconductor, whereas there is no hybridisation between the above-mentioned molecules and pristine graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号