首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life’s earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life’s persistence on a changing planet.  相似文献   

2.
The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the ‘operational’ RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure.  相似文献   

3.
We describe, on the molecular level, a possible fuzzy and primordial translation apparatus capable of synthesizing polypeptides from nucleic acids in a world containing a mixture of coevolving molecules of RNA and proteins already arranged in metabolic cycles (including cofactors). Close attention is paid to template-free systems because they are believed to be the immediate ancestors of this primordial translation apparatus. The two classes of amnoacyl-tRNA synthetases (aaRSs), as seen today, are considered as the remnants of such a simple imprecise translation apparatus and are used as guidelines for the construction of the model. Earlier theoretical work by Bedian on a related system is invoked to show how specificity and stability could have been achieved automatically and rather quickly, starting from such an imprecise system, i.e., how the encoded synthesis of proteins could have appeared. Because of the binary nature of the underlying proto-code, the first genetically encoded proteins would then have been alternating copolymers with a high degree of degeneracy, but not random. Indeed, a clear signal for alternating hydrophobic and hydrophilic residues in present-day protein sequences can be detected. Later evolution of the genetic code would have proceeded along lines already discussed by Crick. However, in the initial stages, the translation apparatus proposed here is in fact very similar to the one postulated by Woese, only here it is given a molecular framework. This hypothesis departs from the paradigm of the RNA world in that it supposes that the origin of the genetic code occurred after the apparition of some functional (statistical) proteins first. Implications for protein design are also discussed.  相似文献   

4.
The origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages of the code and the incorporation of tRNA anticodon modifications. As the first codons started to encode amino acids, the translation machinery likely was faced with a large number of unassigned codons. Current molecular scenarios for the evolution of the code usually assume the very rapid assignment of all codons before all 20 amino acids became encoded. We show that the phenomenon of nonsense suppression as observed in current organisms allows for a scenario in which many unassigned codons persisted throughout most of the evolutionary development of the code. In addition, we demonstrate that incorporation of anticodon modifications at a late stage is feasible. The wobble rules allow a set of 20 tRNAs fully lacking anticodon modifications to encode all 20 canonical amino acids. These observations have implications for the biochemical plausibility of early stages in the evolution of the genetic code predating tRNA anticodon modifications and allow for effective translation by a relatively small and simple early tRNA set.  相似文献   

5.
The origin of translation and the genetic code is one of the major mysteries of evolution. The advantage of templated protein synthesis could have been achieved only when the translation apparatus had already become very complex. This means that the translation machinery, as we know it today, must have evolved towards some different essential function that subsequently sub-functionalised into templated protein synthesis. The hypothesis presented here proposes that translation originated as the result of evolution of a primordial RNA helicase, which has been essential for preventing dying out of the RNA organism in sterile double-stranded form. This hypothesis emerges because modern ribosome possesses RNA helicase activity that likely dates back to the RNA world. I hypothesise that codon-anticodon interactions of tRNAs with mRNA evolved as a mechanism used by RNA helicase, the predecessor of ribosomes, to melt RNA duplexes. In this scenario, peptide bond formation emerged to drive unidirectional movement of the helicase via a molecular ratchet mechanism powered by Brownian motion. I propose that protein synthesis appeared as a side product of helicase activity. The first templates for protein synthesis were functional RNAs (ribozymes) that were unwound by the helicase, and the first synthesised proteins were of random or non-sense sequence. I further suggest that genetic code emerged to avoid this randomness. The initial genetic code thus emerged as an assignment of amino acids to codons according to the sequences of the pre-existing RNAs to take advantage of the side products of RNA helicase function.  相似文献   

6.
7.
The origin of the genetic code marked a major transition from a plausible RNA world to the world of DNA and proteins and is an important milestone in our understanding of the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin by carrying out simulations of code-sequence coevolution in finite populations in stages, leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid code(s). We explore two different scenarios of primordial code evolution. In one scenario, competition occurs between populations of equilibrated code-sequence sets while in another scenario; new codes compete with existing codes as they are gradually introduced into the population with a finite probability. In either case, we find that natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. The code whose structure is most consistent with the standard genetic code is often not among the codes that have a high fixation probability. However, we find that the composition of the code population affects the code fixation probability. A physico-chemically optimized code gets fixed with a significantly higher probability if it competes against a set of randomly generated codes. Our results suggest that physico-chemical optimization may not be the sole driving force in ensuring the emergence of the standard genetic code.  相似文献   

8.

Background  

The RNA world hypothesis posits that the earliest genetic system consisted of informational RNA molecules that directed the synthesis of modestly functional RNA molecules. Further evidence suggests that it was within this RNA-based genetic system that life developed the ability to synthesize proteins by translating genetic code. Here we investigate the early development of the translation system through an evolutionary survey of protein architectures associated with modern translation.  相似文献   

9.
Muller AW 《Bio Systems》2005,82(1):93-102
The thermosynthesis concept, biological free energy gain from thermal cycling, is combined with the concept of the RNA World. The resulting overall origin of life model suggests new explanations for the emergence of the genetic code and the ribosome. It is proposed that the first protein named pF(1) obtained the energy to support the RNA World by a thermal variation of F(1) ATP synthase's binding change mechanism. It is further proposed that this pF(1) was the single translation product during the emergence of the genetic machinery. During thermal cycling pF(1) condensed many substrates with broad specificity, yielding NTPs and randomly constituted protein and RNA libraries that contained self-replicating RNA. The smallness of pF(1) permitted the emergence of the genetic machinery by selection of RNA that increased the fraction of pF(1)s in the protein library: (1) an amino acids concatenating progenitor of rRNA bound to (2) a chain of 'positional tRNAs' linked by mutual recognition, and yielded a pF(1) (or its main motif); this positional tRNA set gradually evolved to a set of regular tRNAs functioning according to the genetic code, with concomitant emergence of (3) an mRNA coding for pF(1).  相似文献   

10.
The evolutionary history of the two structural and functional domains of tRNA is controversial but harbors the secrets of early translation and the genetic code. To explore the origin and evolution of tRNA, we reconstructed phylogenetic trees directly from molecular structure. Forty-two structural characters describing the geometry of 571 tRNAs and three statistical parameters describing thermodynamic and mechanical features of molecules quantitatively were used to derive phylogenetic trees of molecules and molecular substructures. Trees of molecules failed to group tRNA according to amino acid specificity and did not reveal the tripartite nature of life, probably due to loss of phylogenetic signal or because tRNA diversification predated organismal diversification. Trees of substructures derived from both structural and statistical characters support the origin of tRNA in the acceptor arm and the hypothesis that the top half domain composed of acceptor and pseudouridine (TΨC) arms is more ancient than the bottom half domain composed of dihydrouridine (DHU) and anticodon arms. This constitutes the cornerstone of the genomic tag hypothesis that postulates tRNAs were ancient telomeres in the RNA world. The trees of substructures suggest a model for the evolution of the major functional and structural components of tRNA. In this model, short RNA hairpins with stems homologous to the acceptor arm of present day tRNAs were extended with regions homologous to TΨC and anticodon arms. The DHU arm was then incorporated into the resulting three-stemmed structure to form a proto-cloverleaf structure. The variable region was the last structural addition to the molecular repertoire of evolving tRNA substructures. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Many important transitions in evolution are associated with novel ways of storing and transmitting information. The storage of information in DNA sequence, and its transmission through DNA replication, is a fundamental hereditary system in all extant organisms, but it is not the only way of storing and transmitting information, and has itself replaced, and evolved from, other systems. A system that transmits information can have limited heredity or indefinite heredity. With limited heredity, the number of different possible types is commensurate with, or below, that of the individuals. With indefinite heredity, the number of possible types greatly exceeds the number of individuals in any realistic system. Recent findings suggest that the emergence and subsequent evolution of very different hereditary systems, from autocatalytic chemical cycles to natural language, accompanied the major evolutionary transitions in the history of life.  相似文献   

13.
14.
During the last 30 years, a number of alterations to the standard genetic code have been uncovered both in prokaryotes and eukaryotic nuclear and mitochondrial genomes. But, the study of the evolutionary pathways and molecular mechanisms of codon identity redefinition has been largely ignored due to the assumption that non-standard genetic codes can only evolve through neutral evolutionary mechanisms and that they have no functional significance. The recent discovery of a genetic code change in the genus Candida that evolved through an ambiguous messenger RNA decoding mechanism is bringing that naive assumption to an abrupt end by showing, in a rather dramatic way, that genetic code changes have profound physiological and evolutionary consequences for the species that redefine codon identity. In this paper, the recent data on the evolution of the Candida genetic code are reviewed and an experimental framework based on forced evolution, molecular genetics and comparative and functional genomics methodologies is put forward for the study of non-standard genetic codes and genetic code ambiguity in general. Additionally, the importance of using Saccharomyces cerevisiae as a model organism for elucidating the evolutionary pathway of the Candida and other genetic code changes is emphasised.  相似文献   

15.
Kawamura K 《Biochimie》2012,94(7):1441-1450
Following the discovery of ribozymes, the “RNA world” hypothesis has become the most accepted hypothesis concerning the origin of life and genetic information. However, this hypothesis has several drawbacks. Verification of the hypothesis from different viewpoints led us to proposals from the viewpoint of the hydrothermal origin of life, solubility of RNA and related biopolymers, and the possibility of creating an evolutionary system comparable to the in vitro selection technique for functional RNA molecules based on molecular biology.  相似文献   

16.
Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.  相似文献   

17.
The origin and evolution of modern biochemistry is a complex problem that has puzzled scientists for almost a century. In my laboratory, we have dissected the emergence of the very early macromolecules that populated primordial cells using ideographic (historical, retrodictive) approaches. Deep evolutionary signals were retrieved from a census of molecular structures and functions in thousands of nucleic acids and millions of proteins using powerful phylogenomic methods. These clock-like signals revealed that modern biochemistry resulted from gradual coevolution and accretion of molecular parts and molecules. This was made evident in the study of aminoacyl-tRNA synthetase (aaRS) enzymes and the ribosomal ensemble. aaRSs coevolved with tRNAs, as catalytic aaRS domains and acceptor arm tRNAs accreted domains, and RNA substructures. Similarly, the ribosome originated in its central ratchet mechanism and expanded by coevolving rRNA–protein interactions (Figure 1). Remarkably, while the first biochemical functions were metabolic, the translation, the genetic code, and the ribosome appeared quite late as ‘exacting’ mechanisms that enhanced protein folding speed and flexibility, benefiting the search for new molecular functions. Our timelines reveal that translation unfolded only after the rise of viruses but prior to the appearance of diversified archaeal microbes. Remarkably, its debut coincided with the rise of nucleotide and amino acid biosynthetic pathways .  相似文献   

18.

Background  

The origin of the translation system is, arguably, the central and the hardest problem in the study of the origin of life, and one of the hardest in all evolutionary biology. The problem has a clear catch-22 aspect: high translation fidelity hardly can be achieved without a complex, highly evolved set of RNAs and proteins but an elaborate protein machinery could not evolve without an accurate translation system. The origin of the genetic code and whether it evolved on the basis of a stereochemical correspondence between amino acids and their cognate codons (or anticodons), through selectional optimization of the code vocabulary, as a "frozen accident" or via a combination of all these routes is another wide open problem despite extensive theoretical and experimental studies. Here we combine the results of comparative genomics of translation system components, data on interaction of amino acids with their cognate codons and anticodons, and data on catalytic activities of ribozymes to develop conceptual models for the origins of the translation system and the genetic code.  相似文献   

19.
The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life‐history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome‐wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA‐seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.  相似文献   

20.
Life appears to be a natural property of matter, but the problem of its origin only arose after early scientists refuted continuous spontaneous generation. There is no chance of life arising ‘all at once’, we need the standard scientific incremental explanation with large numbers of small steps, an approach used in both physical and evolutionary sciences. The necessity for considering both theoretical and experimental approaches is emphasized. After describing basic principles that are available (including the Darwin-Eigen cycle), the search for origins is considered under four main themes. These are the RNA-world hypothesis; potential intermediates between an RNA-world and a modern world via the evolution of protein synthesis and then of DNA; possible alternatives to an RNA-world; and finally the earliest stages from the simple prebiotic systems to RNA. The triplicase/proto-ribosome theory for the origin of the ribosome is discussed where triples of nucleotides are added to a replicating RNA, with the origin of a triplet code well-before protein synthesis begins. The length of the code is suggested to arise from the early development of a ratchet mechanism that overcomes the problem of continued processivity of an RNA-based RNA-polymerase. It is probable that there were precursor stages to RNA with simpler sugars, or just two nucleotides, but we do not yet know of any better alternatives to RNA that were likely to arise naturally. For prebiotic stages (before RNA) a flow-reactor model is suggested to solve metabolism, energy gradients, and compartmentation simultaneously – thus the intense interest in some form of flow reactor. If an autocatalytic cycle could arise in such a system we would be major steps ahead. The most likely physical conditions for the origin of life require further clarification and it is still unclear whether the origin of life is more of an entropy (information) problem (and therefore high temperatures would be detrimental), rather than a kinetic problem (where high temperatures may be advantageous).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号