首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex.  相似文献   

3.
4.
H Aiba  A Hanamura  T Tobe 《Gene》1989,85(1):91-97
  相似文献   

5.
6.
7.
8.
9.
How cyclic AMP and its receptor protein act in Escherichia coli   总被引:24,自引:0,他引:24  
S Adhya  S Garges 《Cell》1982,29(2):287-289
  相似文献   

10.
The properties of the two monoclonal antibodies which were found to inhibit cyclic AMP receptor protein (CRP)-stimulated abortive initiation without affecting cAMP binding (Li, X.-M., and Krakow, J. S. (1986) J. Biol. Chem. 260, 4378-4383) have been characterized. Binding of monoclonal antibody (mAb) 66C3 to CRP is stimulated by cAMP while CRP binding by mAb 63B2 is not affected by cAMP. Binding of cAMP-CRP-mAb 63B2 to the lac P+ DNA is completely inhibited. Whereas cAMP-CRP forms a stable complex only at the CRP site 1 of the lac P+ promoter fragment, cAMP-CRP-mAb 66C3 binds to both site 1 and site 2. DNase I footprinting using a HpaII fragment carrying only the lac site 2 does not show any protection by cAMP-CRP-mAb 66C3. With the lac L8UV5 promoter, binding is not seen at either the L8 site 1 or the unaltered site 2. In the presence of 25% glycerol, cAMP-CRP-mAb 66C3 binds to both L8 site 1 and site 2. RNA polymerase is unable to bind to the cAMP-CRP-mAb 66C3-lac P+ complex. In the presence of RNA polymerase, cAMP-CRP forms a stable complex at the L8 site 1, the subsequent addition of mAb 66C3 results in the release of CRP. The CRP present in the lac P+ open promoter complex is partially resistant to subsequent incubation with mAb 66C3. The results provide further evidence regarding possible contacts between CRP and RNA polymerase involved in establishing the open promoter complex.  相似文献   

11.
12.
13.
The non-specific DNA binding of CRP and its N-terminal core, alpha CRP, to a 298 base pair DNA fragment, in the presence and absence of cAMP, has been studied using the nitrocellulose filter binding technique and analysed quantitatively using the theory of Clore et al. [J. Mol. Biol. (1982) 155, 447-466]. It is shown that both CRP and alpha CRP bind cooperatively to DNA. At an ionic strength of 100 mM and pH 7.5, the intrinsic equilibrium association constant for the binding of alpha CRP to DNA is approximately 10-times smaller than that for CRP, but the cooperativity parameter is approximately 17-times larger for alpha CRP than CRP. cAMP exerts its effect solely on the intrinsic equilibrium constant and does not alter the cooperativity. In the case of alpha CRP, cAMP reduces the intrinsic equilibrium association constant by a factor of 3, in contrast to the case of CRP where cAMP increases it by a factor of 3. The possible location of the DNA binding site present in the N-terminal core of CRP is discussed in the light of crystallographic data on the cAMP . CRP complex [McKay et al. (1982) J. Biol. Chem. 257, 9518-9524].  相似文献   

14.
E Heyduk  T Heyduk  J C Lee 《Biochemistry》1992,31(14):3682-3688
Escherichia coli cAMP receptor protein (CRP) is a homodimer in which each subunit is composed of two domains. The C-terminal domain is responsible for DNA recognition, whereas the larger N-terminal domain is involved in cAMP binding. Biochemical and genetic evidence suggests that both intersubunit and interdomain interactions play important roles in the regulatory mechanism of this protein. Essentially all intersubunit contacts occur via a long C-helix which is a part of the N-terminal domain. In this work, intersubunit interactions in CRP were studied with the use of two proteolytic fragments of the protein. Subtilisin digestion produces a fragment (S-CRP) which includes residues 1-117 and in which about 85% of the C-helix is removed, whereas chymotrypsin digestion produces a fragment (CH-CRP) consisting of residues 1-136, in which the whole C-helix is preserved. Both fragments were purified and subjected to functional tests which included cAMP binding, subunit assembly, and hydrodynamic properties in the presence and absence of cAMP. S-CRP binds cAMP with a similar affinity to that of native CRP but with reduced cooperativity. CH-CRP exhibits about 1 order of magnitude tighter binding of cAMP than S-CRP or CRP and the highest degree of negative cooperativity. Both fragments are dimeric with dimerization constants around 10(8) M-1. Ligand binding promotes dimerization and induces a small contraction of both S-CRP and CH-CRP. There is no apparent correlation between dimer stability and cooperativity of ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

16.
Cyclic AMP is a ubiquitous secondary message that regulates a large variety of functions. The protein structural motif that binds cAMP is highly conserved with the exception of loops 3 and 4, whose structure and length are variable. The cAMP receptor protein of Escherichia coli, CRP, was employed as a model system to elucidate the functional roles of these loops. Based on the sequence differences between CRP and cyclic nucleotide gated channel, three mutants of CRP were constructed: deletion (residues 54-56 in loop 3 were deleted), insertion (loop 4 was lengthened by 5 residues between Glu-78 and Gly-79) and double mutants. The effects of these mutations on the structure and function of CRP were monitored. Results show that the deletion and insertion mutations do not significantly change the secondary structure of CRP, although the tertiary and quaternary structures are perturbed. The functional data indicate that loop 3 modulates the binding affinities of cAMP and DNA. Although the lengthened loop 4 may have some fine-tuning functions, the specific function of the original loop 4 of CRP remains uncertain. The function consequences of mutation in loop 3 of CRP are similar to that of site A and site B in the regulatory subunits of cyclic AMP-dependent protein kinases. Thus, the roles played by loop 3 in CRP may represent a more common mechanism employed by cyclic nucleotide binding domain in modulating ligand binding affinity and intramolecular communication.  相似文献   

17.
18.
19.
Dong A  Malecki JM  Lee L  Carpenter JF  Lee JC 《Biochemistry》2002,41(21):6660-6667
Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号