首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major component on sodium dodecyl sulfate-containing gels of solubilized isolated Z-discs, purified from honeybee flight muscle, migrates with an apparent molecular weight of 360,000. Antibodies to this high molecular weight polypeptide have been prepared by injecting rabbits with homogenized gel slices containing the protein band. With indirect immunofluorescence microscopy these antibodies are localized to a region extending from the edge of the Z-band to the A-band in shortened or stretched sarcomeres. Similarly, glycerinated flight muscle treated with antiserum and prepared for electron microscopy shows enhanced density from the ends of the thick filaments to the I-Z junction regardless of sarcomere length. Evidence indicates that antiserum is directed toward a structural protein of connecting filaments, which link thick filaments to the Z-band in insect fibrillar muscle, rather than to a thin filament component. In Ouchterlony double-diffusion experiments a single precipitin band is formed when antiserum is diffused against solubilized Z-discs; no reaction occurs between antiserum and proteins from native thin filaments prepared from honeybee flight muscle. Further, antibody stains the I-band in flight muscle fibrils from which thin filaments are removed. Finally, honeybee leg muscle myofibrils, in which connecting filaments have not been observed, are not labelled with antibody. Since antibody binds to the short projections which extend from the flat surfaces of isolated Z-discs, these projections are assumed to be remnants of connecting filaments and the source of the 360,000 Mr protein.The amino acid composition of this high molecular weight material, purified by Sepharose chromatography, is presented. The protein has been named “projectin”.  相似文献   

2.
The core structures of microvilli from absorptive cells of the intestinal epithelium are primarily composed of calmodulin (Mr 16,000), actin (Mr 43,000), villin (Mr 95,000) and a protein of Mr 110,000. We have isolated this protein and raised antibodies against it. The antibodies interact specifically with villin and Mr 110,000 polypeptides present in isolated microvilli or brush borders. However, after absorption on an immobilized villin preparation, these antibodies still immunoprecipitate the Mr 110,000 protein but not villin. Thus, these two proteins appear to share some antigenic determinants but also contain other determinants specific for each protein. Immunolocalization studies have been performed using specific antibodies against the Mr 110,000 protein. Immunofluorescent studies on thin frozen sections of intestinal cells show that this protein is located in the brush border and at the basolateral faces of these polarized cells. Immunoferritin studies on rat brush borders demembranated with the detergent Triton X-100 show the association of the Mr 110,000 protein with core filaments of microvilli, as well as with some filaments localized in the terminal web network.Using sealed, right-side-out vesicles prepared from pig intestinal mucosa in the presence of Ca2+ and Mg2+, a polypeptide of Mr 140,000 was found to be a major component of the Triton X-100 insoluble pellet. This protein is a minor component of an equivalent pellet obtained from isolated microvilli prepared in the presence of EDTA. The significance of this Mr 140,000 polypeptide associated with the core residue of intestinal microvilli is discussed.  相似文献   

3.
The mammalian neurofilament triplet proteins (210, 160 and 68 × 103Mr proteins) are resolved by anion exchange chromatography in the presence of urea. Upon dialysis against physiological buffers at 37 °C only the 68 × 103Mr protein shows self-assembly into morphologically normal intermediate-sized filaments. Addition of 210 × 103Mr protein to 68 × 103Mr protein leads to shorter filaments, which upon embedding reveal a rough surface and whisker-like protrusions that are not present on the smooth surface of filaments assembled from 68 × 103Mr protein alone. Certain emerging principles of neurofilament structure are discussed, emphasizing a possible relation between neurofilaments and other intermediate-sized filaments.  相似文献   

4.
Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.  相似文献   

5.
We have studied the mechanism of activation of native cardiac thin filaments by calcium and rigor myosin. The acceleration of the rate of 2′-deoxy-3′-O-(N-methylanthraniloyl)ADP (mdADP) dissociation from cardiac myosin-S1-mdADP-Pi and cardiac myosin-S1-mdADP by native cardiac muscle thin filaments was measured using double mixing stopped-flow fluorescence. Relative to inhibited thin filaments (no bound calcium or rigor S1), fully activated thin filaments (with both calcium and rigor-S1 bound) increase the rate of product dissociation from the physiologically important pre-power stroke myosin-mdADP-Pi by a factor of ∼75. This can be compared with only an ∼6-fold increase in the rate of nucleotide diphosphate dissociation from nonphysiological myosin-mdADP by the fully activated thin filaments relative to the fully inhibited thin filaments. These results show that physiological levels of regulation are not only dependent on the state of the thin filament but also on the conformation of the myosin. Less than 2-fold regulation is due to a change in affinity of myosin-ADP-Pi for thin filaments such as would be expected by a simple “steric blocking” of the myosin-binding site of the thin filament by tropomyosin. Although maximal activation requires both calcium and rigor myosin-S1 bound to the cardiac filament, association with a single ligand produces ∼70% maximal activation. This can be contrasted with skeletal thin filaments in which calcium alone only activated the rate of product dissociation ∼20% of maximum, and rigor myosin produces ∼30% maximal activation.  相似文献   

6.
Type IV pili are surface-exposed filaments and bacterial virulence factors, represented by the Tfpa and Tfpb types, which assemble via specific machineries. The Tfpb group is further divided into seven variants, linked to heterogeneity in the assembly machineries. Here we focus on PilO2Bp, a protein component of the Tfpb R64 thin pilus variant assembly machinery from the pathogen Burkholderia pseudomallei. PilO2Bp belongs to the PF06864 Pfam family, for which an improved definition is presented based on newly derived Hidden Markov Model (HMM) profiles. The 3D structure of the N-terminal domain of PilO2Bp (N-PilO2Bp), here reported, is the first structural representative of the PF06864 family. N-PilO2Bp presents an actin-like ATPase fold that is shown to be present in BfpC, a different variant assembly protein; the new HMM profiles classify BfpC as a PF06864 member. Our results provide structural insight into the PF06864 family and on the Type IV pili assembly machinery.  相似文献   

7.
Effect of temperature on the in vitro assembly of bacterial flagella   总被引:3,自引:0,他引:3  
The temperature dependence for the rate of reconstitution or polymerization (k+) at neutral pH of the protein, flagellin, to flagella was measured using Ostwald-type viscometers. Similarly, the kinetics for the reverse process, the thermally-induced depolymerization of flagella filaments to the flagellin monomer (k?) was measured. The temperature at which k? equals zero was used to define the thermal dissociation temperature or melting point of flagella filaments. The remarkable similarity of melting points obtained (36.8 ± 0.2 deg. C) for flagella isolated from three Salmonella strains (SJ670, SJ25 and SJ30 bearing H-antigen types i, 1.2 and e, n, x, respectively) suggests that the structural stability of these different protein filaments is also similar.On increasing the temperature between 12 and 28°C, k+ increased smoothly and had a Q10 of 1.8. Above 28.0, k+ decreased rapidly and fell to zero at a temperature near 37°C, its precise value varying with the bacterial strain. This result supports the prior hypothesis (Gerber &; Noguchi, 1967) that on heating, a reversible co-operative transconformation occurs between different states of the protein; in one state, flagellin (M) can polymerize to flagella, whereas its conformational isomer(s) may do so with difficulty or not at all.For strains SJ25 and SJ30 the rates of polymerization and depolymerization both fall to zero near 37°C. Therefore, mixtures of monomer and flagella fragments (short polymers or “seeds”), in all ratios, appear to be in equilibrium at temperatures near this critical temperature, and neither polymerization of flagellin to flagella nor melting of polymers is apparent.Measurements made on flagella from strain SJ670 showed that k+ and k? approached zero at 45 and 37°C, respectively. Within this temperature range the conc entration of monomer in equilibrium with filaments was determined. By a null -point type experiment, solutions of monomer and seed were mixed to find the ratio that showed neither increases (polymerization) nor decreases (depolyme rization) in viscosity with time. An unexpected finding was that the temperature defines a critical monomer concentration, which exists in equilibrium with any concentration of filaments (and not the ratio of monomer-to-filament concentrations). Thus, the polymerization of fiagellin to flagella corresponds to a phase change akin to either crystallization or condensation.Application, of the Clapeyron-Clausius equation to the results obtained yields a heat of condensation of 70 kcal/mol of monomeric protein. The enthalpy change associated with M ? Mi is estimated as 110 kcal/mol of protein. Since the heat content of these various forms of flagella protein lies in the order Mi > F > M, by difference we estimate the enthalpy change for the conversion of monomers to polymers to be 40 kcal/mol of monomer.  相似文献   

8.
A periodic ultrastructure in intermediate filaments   总被引:26,自引:0,他引:26  
Intermediate sized filaments reconstituted in vitro from purified desmin, epidermal keratin and the Mr 68,000 protein of neurofilaments were examined after high resolution metal shadowing. The filaments demonstrate a marked longitudinal periodicity of about 21 nm. This is the first procedure that allows detection of a periodic substructure in these filaments using the electron microscope.  相似文献   

9.
Cardiac troponin T (cTnT) is a component of the troponin (Tn) complex in cardiac myocytes, and plays a regulatory role in cardiac muscle contraction by anchoring two other Tn components, troponin I (TnI) and troponin C, to tropomyosin (Tm) on the thin filaments. In order to determine the in vivo function of cTnT, we created a null cTnT allele in the mouse TNNT2 locus. In cTnT-deficient (cTnT−/−) cardiac myocytes, the thick and thin filaments and α-actinin-positive Z-disk-like structures were not assembled into sarcomere, causing early embryonic lethality due to a lack of heartbeats. TnI was dissociated from Tm in the thin filaments without cTnT. In spite of loss of Tn on the thin filaments, the cTnT−/− cardiac myocytes showed regular Ca2+-transients. These findings indicate that cTnT plays a critical role in sarcomere assembly during myofibrillogenesis in the embryonic heart, and also indicate that the membrane excitation and intracellular Ca2+ handling systems develop independently of the contractile system. In contrast, heterozygous cTnT+/− mice had a normal life span with no structural and functional abnormalities in their hearts, suggesting that haploinsufficiency could not be a potential cause of cardiomyopathies, known to be associated with a variety of mutations in the TNNT2 locus.  相似文献   

10.
We have examined the structure of actin-binding molecules in solution and interacting with actin filaments. At physiological ionic strength, actin-binding protein has a Mr value of 540 × 103 as determined by direct and indirect hydrodynamic measurements. It is an asymmetrical dimer composed of 270 × 103 dalton subunits. Viewed in the electron microscope after negative staining or low angle shadowing, actin-binding protein molecules assume a broad range of conformations varying from closed circular structures to fully extended strands 162 nm in contour length. All configurations are apparently derived from the same structure which consists of two monomer chains connected end-to-end. The radius of gyration determined from the electron microscopic images was 21.3 nm in agreement with the value of 17.6 nm calculated from hydrodynamic assays. The average axial ratio from hydrodynamic measurements was 17:1, whereas fully extended dimer molecules in the electron microscope would have an axial ratio of 54:1. All of these observations indicate that actin-binding protein dimers are extremely flexible. The flexibility parameter λ (Landau &; Lifshits, 1958) for actinbinding protein is 0.18 nm?1.As determined by sedimentation, actin-binding protein binds to actin filaments with a Ka value of 2 × 106m?1 and a capacity of one dimer to 14 actin monomers in filaments. After incubation of high concentrations (molar ratio to actin ≥ 1:10) of actin-binding protein with actin filaments, long filament bundles are visible in the electron microscope. Under these conditions, actin-binding protein molecules decorate the actin filaments in the bundles at regular 40 nm intervals or once every 15 monomers, approximately equivalent to the binding capacity measured by sedimentation. Low concentrations of actin-binding protein (molar ratio to actin ≥ 1:50) which promote the gelation of actin filaments in solution, did not detectably alter the isotropy of the actin filaments. Direct visualization of actinbinding protein molecules between actin filaments in the electron microscope showed that dimers are sufficient for crossbridging of actin filaments and that actinbinding protein dimers are bipolar, composed of monomers connected head-to-head and having actin-binding sites located on the free tails.We conclude that actin-binding protein is a dimer at physiological ionic strength. Each dimer has two actin filament binding sites and is therefore sufficient to gel actin filaments in solution. The length and flexibility of the actin-binding protein subunits render this molecule structurally suited for the crosslinking of large helical filaments into isotropic networks.  相似文献   

11.
12.
Summary The distribution and polarity of actin in sensory hair cells of the chinchilla cochlea has been determined by decoration of actin filaments with myosin sub fragment S1. Decorated actin filaments of the same polarity were present within the stereocilia above the cuticular plate. However the filaments in the rootlets and the thin filaments projecting laterally from the rootlets into the cuticular plate did not decorate with S1. Decorated actin filaments were present within the cuticular plate, and near the plasma-membrane filaments of opposite polarity were observed. In the cross-striated region at the base of the cuticular plate of inner hair cells, decorated filaments were present in the dense bands of the cross-striations but the thin filaments perpendicular to the dense bands were not decorated. These results are discussed with respect to the two mechanisms that have been suggested for actin-myosin mediated movement of the stereocilia of inner-ear sensory cells.  相似文献   

13.
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.  相似文献   

14.
unc-94 is one of about 40 genes in Caenorhabditis elegans that, when mutant, displays an abnormal muscle phenotype. Two mutant alleles of unc-94, su177 and sf20, show reduced motility and brood size and disorganization of muscle structure. In unc-94 mutants, immunofluorescence microscopy shows that a number of known sarcomeric proteins are abnormal, but the most dramatic effect is in the localization of F-actin, with some abnormally accumulated near muscle cell-to-cell boundaries. Electron microscopy shows that unc-94(sf20) mutants have large accumulations of thin filaments near the boundaries of adjacent muscle cells. Multiple lines of evidence prove that unc-94 encodes a tropomodulin, a conserved protein known from other systems to bind to both actin and tropomyosin at the pointed ends of actin thin filaments. su177 is a splice site mutation in intron 1, which is specific to one of the two unc-94 isoforms, isoform a; sf20 has a stop codon in exon 5, which is shared by both isoform a and isoform b. The use of promoter-green fluorescent protein constructs in transgenic animals revealed that unc-94a is expressed in body wall, vulval and uterine muscles, whereas unc-94b is expressed in pharyngeal, anal depressor, vulval and uterine muscles and in spermatheca and intestinal epithelial cells. By Western blot, anti-UNC-94 antibodies detect polypeptides of expected size from wild type, wild-type-sized proteins of reduced abundance from unc-94(su177), and no detectable unc-94 products from unc-94(sf20). Using these same antibodies, UNC-94 localizes as two closely spaced parallel lines flanking the M-lines, consistent with localization to the pointed ends of thin filaments. In addition, UNC-94 is localized near muscle cell-to-cell boundaries.  相似文献   

15.
The time course for the build-up and decay of birefringence induced by a rectangular voltage pulse was measured on solutions of flagellar filaments from Salmonella equi-abortus (strain SJ25). These filaments are tubular polymers of protein (degree of polymerization ≈ 103) constituted by non-covalent linkage of flagellin monomers of molecular weight 4 × 104. The effect on electro-optical properties of solutions of filaments due to variations in temperature, concentration and mean length of protein filaments, and the duration and intensity of the applied electric field is described. Analysis of the field intensity dependence of the birefringence and comparison of the build-up and decay processes indicate that orientation in the field is due primarily to the existence of a permanent dipole moment in the filaments. At 18 °C the following values were obtained for a solution of filaments with mean length and standard deviation of 0.39 and 0.30 μm: specific Kerr constant (Ksp) = 6.14 × 10−3 electrostatic units; optical anisotropy factor (g1g2) = 5.66 × 10−3; dipole moment (μ) = 1.01 × 105 Debye units; and mean relaxation time (\̄gt) = 9.20 ms. At temperatures below 20 °C there is a marked increase in the optical anisotropy factor of the filaments which may be due to a change in their flexibility. The large values of Ksp obtained indicate the highly responsive nature of these filaments to an electric field. The birefringence decay curves were decomposed by computer into a specified number of exponential terms from which both the mean length and the size distribution of these polydisperse filaments were calculated. The results obtained were in substantial agreement with the values of these parameters observed by electron microscopy. A cumulative field effect dependent on field intensity and filament concentration was observed. Repeated pulsing of electric field, above threshold values of field intensity and filament concentration, produced decreases in the birefringence near 60% of its initial value. The effect was reversible with a time constant greater than two minutes. No appreciable change in the relaxation time for decay of birefringence was observed on multiple pulsing of these solutions. These results are interpreted consistently to arise from the sidewise aggregation of filaments induced by electrical impulses of sufficient intensity and duration. These properties appear relevant to bacterial motility: variations in electric potential along the membrane of the bacterium might serve first to orient these organelles and then to induce their coalescence to “bundles” of filaments. The latter structures are commonly observed in vivo. In this way the activity of flagella might be co-ordinated.  相似文献   

16.

Background

Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90α1 (Hsp90α1) has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90α1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90α1 function or indirectly through the disorganization of myosin thick filaments.

Methodology/Principal Findings

In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide) in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1) resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90α1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines.

Conclusion/Significance

Together, these studies indicate that the hsp90α1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90α1 may play a role in the assembly and organization of other sarcomeric structures.  相似文献   

17.
We have used the method of three-dimensional image reconstruction of electron micrographs to analyse the structure of thin filaments and pure F-actin filaments decorated with myosin subfragment-1. To help improve on the earlier work of Moore et al. (1970), we have obtained all our data using minimal electron dose procedures to reduce radiation damage. Modifications in the specimen preparation have enabled us to process straight stretches of filament twice as long as any used in the earlier work, resulting in a corresponding improvement in the signal-to-noise ratio and the resolution. The results show significant changes in the density distribution in the region near the axis of the structure. Compared with the earlier model, the reconstructions show the presence of extra density close to the axis of the particle. We present a case for identifying actin with the density in this region, rather than with the density at higher radius previously designated as actin. This new assignment for the position of actin within the decorated filament structure leads to a radical change in the geometry of the model for myosin subfragment-lactin interaction. Furthermore, by comparing the features that we identify as actin with the reconstructed images of undecorated thin filaments published by Wakabayashi et al. (1975), we conclude that the polarity that has previously been assumed for the thin filament is incorrect. When the thin filament polarity is reversed, the position that tropomyosin is believed to occupy in the active state coincides with a weakly resolved feature in our reconstructions of decorated thin filaments. These findings, involving a reversal of thin filament polarity combined with the change in the geometry of myosin subfragment-1-actin interaction, allow a revised steric blocking model to be constructed.  相似文献   

18.
A novel 40-kDa calponin-like protein (CaP) was detected in thin filaments from catch muscles of the mussel Crenomytilus grayanus. The content of CaP in thin filaments depends on isolation conditions and varies from complete absence to the presence in amounts comparable with that of tropomyosin. The most significant factor that determines the CaP content in thin filaments is the temperature of solution in which thin filaments are sedimented by ultracentrifugation during isolation. At 22°C and optimal values of pH and ionic strength of the extraction solution, all CaP co-sediments with thin filaments. At 2°C it does not interact with thin filaments and remains in the supernatant. Like vertebrate smooth muscle calponin (33 kDa), the mussel CaP is thermostable, inhibits the Mg2+-ATPase activity of actomyosin, and can be phosphorylated, which is performed by endogenous (co-isolated) kinases in a Ca2+-independent manner. Thus, the C. grayanus CaP is a new member of the family of calponins, the function of which in muscle and nonmuscle cells is still obscure. We suggest that CaP is involved in Ca2+-independent regulation of smooth muscle contraction.  相似文献   

19.
Nostocacean cyanobacteria typically produce gliding filaments termed hormogonia at a low frequency as part of their life cycle. We report here that all Nostoc spp. competent in establishing a symbiotic association with the hornwort Anthoceros punctatus formed hormogonial filaments at a high frequency in the presence of A. punctatus. The hormogonia-inducing activity was produced by A. punctatus under nitrogen-limited culture conditions. The hormogonia of the symbiotically competent Nostoc spp. were characterized as motile (gliding) filaments lacking heterocysts and with distinctly smaller cells than those of vegetative filaments; the small cells resulted from a continuation of cell division uncoupled from biomass increase. An essentially complete conversion of vegetative filaments to hormogonia occurred within 12 h of exposure of Nostoc sp. strain 7801 to A. punctatus growth-conditioned medium. Hormogonia formation was accompanied by loss of nitrogen fixation (acetylene reduction) and by decreases in photosynthetic CO2 fixation and in vivo NH4+ assimilation of 30% and approximately 40%, respectively. The rates of acetylene reduction and CO2 fixation returned to approximately the control rates within 72 to 96 h after hormogonia induction, as the cultures of Nostoc sp. strain 7801 differentiated heterocysts and reverted to the vegetative growth state. The relationship between hormogonia formation and symbiotic competence is discussed.  相似文献   

20.
A model was developed which can simulate both the transient and steady-state mechanical behavior of contracting skeletal striated muscle. Thick filament cross-bridges undergo cycles of attachment to and detachment from thin filament sites. Cross-bridges can attach only while in the first of two stable states. Force is then generated by a transition to the second state after which detachment can occur. Cross-bridges are assumed to be connected to the thin filaments by an elastic element whose extension or compression influences the rate constants for attachment, detachment, and changes between states. The model was programmed for a digital computer and attempts made to match both the transient and the steady-state responses of the model to that of real muscle in two basic types of experiment: force response to sudden change in length and length response to sudden reduction of load from Po. Values for rate constants and other parameters were chosen to try to match the model's output to results from real muscles, while at the same time trying to accommodate structural and biochemical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号