首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we showed that the mitochondrial deoxyribonucleic acid (DNA) from Paramecium aurelia consists of a linear genome and that replication of this genome is initiated at one terminus and proceeds unidirectionally to the other terminus. Analyses of mitochondria from four closely related species (1, 4, 5, and 7) indicated that the species 1, 5, and 7 DNAs are essentially completely homologous but that the species 4 mitochondrial DNA is only 40 to 50% homologous with that from species 1. The major regions of homology are those containing the genes for ribosomal ribonucleic acid (RNA). To understand the replication and organization of the linear mitochondrial genome better, we compared species 1 (Paramecium primaurelia) and 4 (Paramecium tetraaurelia) DNAs with regard to restriction fragment mapping and homology between initiation regions; we also identified the sites of the genes for ribosomal RNA. In general, the structures of the species 1 and 4 mitochondrial genomes were quite similar. Each ribosomal RNA gene was present in one copy per genome, with the large ribosomal RNA gene located near the terminal region of replication and the small ribosomal RNA gene located more centrally. These two genes were separated by about 10 kilobases in the species 1 genome and by about 12 kilobases in the species 4 genome. In contrast to our previous findings, by using nonstringent hybridization conditions we detected homology between the species 1 and 4 DNA fragments containing the initiation regions. We constructed recombinant DNA clones for many fragments, especially those containing the initiation region and the ribosomal RNA genes. We also constructed restriction enzyme maps for six enzymes for both P. primaurelia and P. tetraaurelia.  相似文献   

2.
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves mitochondrial RNA from the origin of leading-strand DNA synthesis contained within the displacement-loop region. Bovine mitochondrial DNA maintains the typical gene content and order of mammalian mitochondrial DNAs but differs in the nature of sequence conservation within this displacement-loop regulatory region. This markedly different sequence arrangement raises the issue of the degree to which a bovine RNase MRP would reflect the physical and functional properties ascribed to the enzymes previously characterized from mouse and human. We find that bovine RNase MRP exists as a ribonucleoprotein, with an RNA component of 279 nucleotides that is homologous to that of mouse or human RNase MRP RNA. Characterization of the nuclear gene for bovine RNase MRP RNA showed conservation of sequence extending 5 of the RNase MRP RNA coding sequence, including the presence of a cis-acting element known to be important for the expression of some mitochondrial protein-coding nuclear genes. Bovine or mouse RNase MRP cleaves a standard mouse mitochondrial RNA substrate in the same manner; each also cleaves a bovine mitochondrial RNA substrate identically. Since bovine and mouse RNase MRPs process both bovine and mouse substrates, we conclude that the structural features of the mitochondrial RNA substrate required for enzymatic cleavage have been well conserved despite significant overall primary sequence divergence. Inspection of the bovine RNA substrate reveals conservation of only the most critical portion of the primary sequence as indicated by earlier studies with mouse and human RNase MRPs. Interestingly, a principal cleavage site in the bovine mitochondrial RNA substrate is downstream of the promoter located at the leading-strand mitochondrial DNA replication origin. Correspondence to: D.J. Dairaghi  相似文献   

3.
The base sequence homology between human and mouse mitochondrial DNA has been investigated by hybridization of highly labelled mitochondrial DNA probes with restriction fragments of mitochondrial DNA blotted according to the Southern technique. By this analysis, the homologous regions have been found to be widely distributed along the mitochondrial genome. Competition hybridization experiments with unlabelled HeLa mitochondrial RNAs have shown that most of the cross-hybridization involves the ribosomal and 4 S RNA genes.  相似文献   

4.
Two DNA sequences that appear to be homologous to large-subunit mitochondrial ribosomal RNA genes have been identified in the stone crabs Menippe mercenaria and M. adina. Amplification from whole genomic DNA by polymerase chain reaction (PCR) with oligonucleotide primers based on conserved portions of large-subunit mitochondrial rRNA genes consistently amplified two products of similar length (565 and 567 bp). These products differed at 3% of their nucleotide bases, and could be distinguished by a HindIII site. Only one of these sequences (designated the A sequence) was detected by PCR in purified mitochondrial DNA. The other (designated the B sequence) hybridized to total genomic DNA at a level consistent with a nuclear genome location. It is unlikely that the type B product would have been recognized as a nuclear copy by examination of its sequence alone. This is the first report of a mitochondrial gene sequence translocated into the nuclear genome of a crustacean.   相似文献   

5.
Differential rates of nucleotide substitution among different gene segments and between distinct evolutionary lineages is well documented among mitochondrial genes and is likely a consequence of locus-specific selective constraints that delimit mutational divergence over evolutionary time. We compared sequence variation of 18 homologous loci (15 coding genes and 3 parts of the control region) among 10 mammalian mitochondrial DNA genomes which allowed us to describe different mitochondrial evolutionary patterns and to produce an estimation of the relative order of gene divergence. The relative rates of divergence of mitochondrial DNA genes in the family Felidae were estimated by comparing their divergence from homologous counterpart genes included in nuclear mitochondrial DNA (Numt, pronounced "new might"), a genomic fossil that represents an ancient transfer of 7.9 kb of mitochondrial DNA to the nuclear genome of an ancestral species of the domestic cat (Felis catus). Phylogenetic analyses of mitochondrial (mtDNA) sequences with multiple outgroup species were conducted to date the ancestral node common to the Numt and the cytoplasmic (Cymt) mtDNA genes and to calibrate the rate of sequence divergence of mitochondrial genes relative to nuclear homologous counterparts. By setting the fastest substitution rate as strictly mutational, an empirical "selective retardation index" is computed to quantify the sum of all constraints, selective and otherwise, that limit sequence divergence of mitochondrial gene sequences over time.   相似文献   

6.
Summary Mapping studies were performed with 18 cloned probes on mitochondrial DNA (mtDNA) from 15 species ofSuillus and four species from three related genera of fleshy pore mushrooms (Boletaceae). WithinSuillus, mtDNAs vary in size from 36 to 121 kb, differ in gene order by only one major rearrangement, and have diverged in nucleotide sequence within the large subunit ribosomal RNA gene region by up to 2.9%. Three additional gene orders exist in related genera. Two of the three can be transformed into the predominantSuillus order by either one or two rearrangements. The fourth requires two to three rearrangements to be converted to any of the others. The minimum estimates of nucleotide divergence within the large subunit ribosomal RNA gene region vary from 8.3% to 11% in comparisons betweenSuillus and these related species. Trees based on restriction-site and size differences within the mitochondrial ribosomal RNA genes were consistent with the hypothesized sequence of genome rearrangements and provide suggestive evidence for a major expansion of the mitochondrial genome withinSuillus. Structural and sequence changes in mtDNA provided information about phylogenetic relationships within the Boletaceae.  相似文献   

7.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   

8.
Cheng Y  Xu T  Shi G  Wang R 《Marine Genomics》2010,3(3-4):201-209
The complete sequence of the 16,493 nucleotide mitochondrial genome from the single species of the family Sciaenidae, the miiuy croaker, Miichthys miiuy, was determined. The nucleotide sequences of M. miiuy mitochondrial DNA have been compared with those of three other Sciaenidae fishes. The contents of the M. miiuy mitochondrial genome are 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and two non-coding regions (L-strand replication origin and control region), the gene order of which is identical to that observed in most vertebrates. The L-strand replication origin of M. miiuy is not pyrimidine-rich compared to those of most bony fishes. Within the control region, we identified the extended termination associated sequence domain, the central conserved sequence block domain and the conserved sequence block domain, while the typical central conserved blocks CSB-D, -E and -F could not be detected in the three other Sciaenidae species. In the ML phylogenetic analyses, the monophyly of Pseudosciaeniae was not supported, which is against with the morphological results. Collichthys niveatus is most closely related to Larimichthys polyactis, and Collichthys and Larimichthys may be merged into one genus, based on the current datasets.  相似文献   

9.
The complete mitochondrial genome sequences were determined for two species of human hookworms, Ancylostoma duodenale (13,721 bp) and Necator americanus (13,604 bp). The circular hookworm genomes are amongst the smallest reported to date for any metazoan organism. Their relatively small size relates mainly to a reduced length in the AT-rich region. Both hookworm genomes encode 12 protein, two ribosomal RNA and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with three other species of Secernentea studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. For both hookworm species, genes were arranged in the same order as for Caenorhabditis elegans, except for the presence of a non-coding region between genes nad3 and nad5. In A. duodenale, this non-coding region is predicted to form a stem-and-loop structure which is not present in N. americanus. The mitochondrial genome structure for both hookworms differs from Ascaris suum only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus, including four gene or gene-block translocations and the positions of some transfer RNA genes and the AT-rich region. Based on genome organisation and amino acid sequence identity, A. duodenale and N. americanus were more closely related to C. elegans than to A. suum or O. volvulus (all secernentean nematodes), consistent with a previous phylogenetic study using ribosomal DNA sequence data. Determination of the complete mitochondrial genome sequences for two human hookworms (the first members of the order Strongylida ever sequenced) provides a foundation for studying the systematics, population genetics and ecology of these and other nematodes of socio-economic importance.  相似文献   

10.
The complete sequence of the mitochondrial genome of Chinook salmon, Oncorhynchus tshawytscha, has been determined. The circular genome consisting of 16,644 base pairs encodes thirteen proteins, the 12S and 16S ribosomal RNAs, and 22 transfer RNAs. These genes are ordered in the same way as most other vertebrates. The nucleotide and amino acid sequences of the ribosomal RNAs and the thirteen protein-coding genes were compared with those of other salmonids such as Oncorhynchus mykiss, Salmo salar, Salvelinus fontinalis, Salvelinus alpinus and Coregonus lavaretus. The sequence features of the control region (D-loop), the origin of L-strand replication and a putative peptide codified by the 16S mitochondrial RNA are described and discussed.  相似文献   

11.
目的 获得中国地鼠线粒体基因组序列,为线粒体疾病模型提供分子数据.方法 参照近缘物种的线粒体基因组序列,设计27对特异引物,采用TD-PCR及测序技术获得了中国地鼠的线粒体全基因组序列,分析了其基因组特点和各基因的定位.还结合GenBank中已发表的其他5种啮齿类动物的线粒体基因组序列,探讨啮齿类动物不同科间的系统进化关系.结果 中国地鼠线粒体基因组全长为16 283 bp,碱基组成为33.53%A、30.50%T、12.98%G、22.80%C,包括13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码基因控制区.中国地鼠和金黄地鼠亲缘关系最近.结论 中国地鼠线粒体基因组各基因长度、位置与典型的啮齿类动物相似,其编码蛋白质区域和rRNA基因与其他啮齿类动物具有很高的同源性,显示线粒体基因组在进化上十分保守.5种动物的分子系统进化树与传统分类地位一致.  相似文献   

12.
I G Young  S Anderson 《Gene》1980,12(3-4):257-265
Bovine-heart mitochondrial DNA from a single animal was isolated and fragments representative of the entire genome cloned into multicopy plasmid vectors to facilitate determination of its complete nucleotide sequence. We present here the sequence of the region covering the gene for cytochrome oxidase subunit II. Comparison of this sequence with the amino acid sequence of the homologous beef-heart protein has enabled the determination of most of the bovine mitochondrial genetic code. The code differs from the "universal" genetic code in that UGA codes for tryptophan and not termination, and AUA codes for methionine and not isoleucine. The only codon family not represented is the AGA/AGG pair normally used for arginine; evidence from other genes suggests that these code for termination in bovine mitochondria. The sequence presented also includes the adjacent tRNAAsp and tRNALys genes. The tRNAAsp gene is separated by one nucleotide from the 5' end of the COII gene and only three bases separate the 3' end of this gene and the adjacent tRNALys gene. This highly compact gene organisation is very similar to that found in the corresponding region of the human mitochondrial genome and the gene arrangement is identical. The structure of the respective bovine and human tRNAs vary primarily the "D-" and "T psi C-loops".  相似文献   

13.
14.
Peng Z  Wang J  He S 《Gene》2006,376(2):290-297
The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characiformes, Gymnotiformes), Siluriformes), Cypriniformes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed.  相似文献   

15.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

16.
J E Heckman  U L RajBhandary 《Cell》1979,17(3):583-595
Through analysis of cloned fragments of N. crassa mitochondrial DNA, we have derived a physical map for the region of the mitochondrial genome which encodes the ribosomal RNAs and most of the tRNAs. We have located RNA genes on this map by hybridization of purified 32P end-labeled RNA probes, and our findings are as follows. First, the gene for the large ribosomal RNA contains an intervening sequence of approximately 2000 bp. Second, the genes for the small and large ribosomal RNAs are not adjacent, as previously reported, and the region between them contains a number of tRNA genes, including that for the mitochondrial tRNATyr, which is located close to the small rRNA gene on the same strand of the mitochondrial DNA. Third, there is a second cluster of tRNA genes on the mitochondrial DNA following the large ribosomal RNA gene, but there is no evidence for the presence of tRNA genes in the intervening sequence of the large ribosomal RNA. Fourth, hybridization of labeled ribosomal and transfer RNAs to the separated strands of a cloned 16 kbp DNA fragment covering this region indicates that the two ribosomal RNAs and most, if not all, of the mitochondrial tRNAs are encoded on one strand of the mitochondrial DNA.  相似文献   

17.
Summary The linear genome of mitochondrial DNA from four species of Paramecium aurelia was investigated with respect to restriction endonuclease fragments, location and number of ribosomal RNA genes, and interspecies EcoRI and HindIII fragment homologies. One copy of each of the rRNA genes was found in all four species and the 14s and 20s rRNA genes were separated by at least 3,000 bp. R-Loop analysis of the 20s rRNA gene did not reveal the presence of an intervening sequence. Interspecies homology studies showed species 1, 5, and 7 to have a high degree of homology but species 4 was less than 50% homologous to species 1 mt DNA. For all four species, rRNA genes showed good homology indicating that these DNA sequences are highly conserved, even between species having many non-homologous regions. A major region of DNA which displayed little homology between species 1 and 4 was that fragment containing sequences essential for initiation of DNA replication.  相似文献   

18.
19.
Analysis of the mitochondrial DNA of a liverwort Marchantia polymorpha by electron microscopy and restriction endonuclease mapping indicated that the liverwort mitochondrial genome was a single circular molecule of about 184,400 base-pairs. We have determined the complete sequence of the liverwort mitochondrial DNA and detected 94 possible genes in the sequence of 186,608 base-pairs. These included genes for three species of ribosomal RNA, 29 genes for 27 species of transfer RNA and 30 open reading frames (ORFs) for functionally known proteins (16 ribosomal proteins, 3 subunits of H(+)-ATPase, 3 subunits of cytochrome c oxidase, apocytochrome b protein and 7 subunits of NADH ubiquinone oxidoreductase). Three ORFs showed similarity to ORFs of unknown function in the mitochondrial genomes of other organisms. Furthermore, 29 ORFs were predicted as possible genes by using the index of G + C content in first, second and third letters of codons (42.0 +/- 10.9%, 37.0 +/- 13.2% and 26.4 +/- 9.4%, respectively) obtained from the codon usages of identified liverwort genes. To date, 32 introns belonging to either group I or group II intron have been found in the coding regions of 17 genes including ribosomal RNA genes (rrn18 and rrn26), a transfer RNA gene (trnS) and a pseudogene (psi nad7). RNA editing was apparently lacking in liverwort mitochondria since the nucleotide sequences of the liverwort mitochondrial DNA were well-conserved at the DNA level.  相似文献   

20.
The complete sequence of the Atlantic salmon (Salmo salar) mitochondrial genome has been determined. The entire sequence is 16665 base pairs (bp) in length, with a gene content (13 protein-coding, two ribosomal RNA [rRNA] and 22 transfer RNA [tRNA] genes) and order conforming to that observed in most other vertebrates. Base composition and codon usage have been detailed. Nucleotide and derived amino acid sequences of the 13 protein-coding genes from Atlantic salmon have been compared with their counterparts in rainbow trout. A putative structure for the origin of L-strand replication (O(L)) is proposed, and sequence features of the control region (D-loop) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号