首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transcription map for adenovirus type 12 DNA.   总被引:1,自引:1,他引:0  
The regions of the adenovirus type 12 genome which encode l- and r-strand-specific cytoplasmic RNA were mapped by the following procedure. Radioactive, intact, separated complementary strands of the viral genome were hybridized to saturating amounts of unlabeled late cytoplasmic RNA. The segments of each DNA strand complementary to the RNA were then purified by S1 nuclease digestion of the hybrids. The arrangement of the coding regions of each strand was deduced from the pattern of hybridization of these probes to unlabeled viral DNA fragments produced by digestion with EcoRI, BamHI, and HindIII.. The resulting map is similar, if not identical, to that of adenovirus type 2. The subset of the late cytoplasmic RNA sequences which are expressed at early times were located on the map by hybridizing labeled, early cytoplasmic RNA to both unlabeled DNA fragments and unlabeled complementary strands of specific fragments. Early cytoplasmic RNA hybridized to the r-strand to EcoRI-C and BamHI-B and to the l-strand of BamHI-E. Hybridization to BamHI-C was also observed. The relative rates of accumulation of cytoplasmic RNA complementary to individual restriction fragments was measured at both early and late times. Early during infection, most of the viral RNA appearing in the cytoplasm was derived from the molecular ends of the genome. Later (24 to 26 h postinfection) the majority of the newly labeled cytoplasmic RNA was transcribed from DNA sequences mapping between 25 and 60 map units on the genome.  相似文献   

2.
A small nuclear ribonucleoprotein, U1 snRNP, has been implicated in mRNA processing. In this investigation sites of protein binding on U1 RNA were mapped by nuclease protection and RNA sequencing. Partially purified human U1 snRNP was sequentially digested with Escherichia coli RNAase III and S1 nuclease. The resistant ribonucleoprotein fragments were deproteinized, preparatively hybridized to the U1 RNA--complementary DNA strand of a human U1 gene cloned in bacteriophage M13, and displayed by electrophoresis. The nuclease-resistant U1 RNA fragments were between 23 and 63 nucleotides in length. Most of these fragments were not obtained when protein-free U1 RNA was similarly digested, whereas others were obtained in low yield from U1 RNA and much higher yield from U1 snRNP. RNA sequencing of the fragments revealed that the protein-protected sites in U1 snRNP correspond to base-paired stems I and II, loop a, and portions of stems III and IV (secondary structure nomenclature of Branlant et al., 1981). Single, "bulged" pyrimidines are present within the protein-covered helical regions of stems I and III. Most interestingly, the single-stranded 5' end of U1 RNA, implicated in mRNA splicing, was also highly protected by protein. These results demonstrate that the great majority of U1 RNA is covered by protein in U1 snRNP. The association of protein with the 5' end of U1 RNA is in agreement with recent evidence that snRNP proteins potentiate the binding of this region of U1 RNA with pre-mRNA splice sites.  相似文献   

3.
Adenovirus chromatin structure at different stages of infection.   总被引:16,自引:0,他引:16       下载免费PDF全文
We investigated the structure of adenovirus deoxyribonucleic acid (DNA)-protein complexes in nuclei of infected cells by using micrococcal nuclease. Parental (infecting) DNA was digested into multimers which had a unit fragment size that was indistinguishable from the size of the nucleosomal repeat of cellular chromatin. This pattern was maintained in parenteral DNA throughout infection. Similar repeating units were detected in hamster cells that were nonpermissive for human adenovirus and in cells pretreated with n-butyrate. Late in infection, the pattern of digestion of viral DNA was determined by two different experimental approaches. Nuclear DNA was electrophoresed, blotted, and hybridized with labeled viral sequences; in this procedure all virus-specific DNA was detected. This technique revealed a diffuse protected band of viral DNA that was smaller than 160 base pairs, but no discrete multimers. All regions of the genome were represented in the protected DNA. To examine the nuclease protection of newly replicated viral DNA, infected cells were labeled with [3H]thymidine after blocking of cellular DNA synthesis but not viral DNA synthesis. With this procedure we identified a repeating unit which was distinctly different from the cellular nucleosomal repeat. We found broad bands with midpoints at 200, 400, and 600 base pairs, as well as the limit digest material revealed by blotting. High-resolution acrylamide gel electrophoresis revealed that the viral species comprised a series of closely spaced bands ranging in size from less than 30 to 250 base pairs.  相似文献   

4.
5.
6.
7.
Heterogeneous nuclear protein complexes (hnRNP) containing the precursor RNA from the adenovirus early region 2 were analysed to determine the specificity of protein-RNA interaction. RNA precursor sequences were present in isolated hnRNP complexes and endogenous 30S particles. At least 20-40 bases long fragments were protected when RNase A was used to remove unprotected RNA sequences in hnRNA complexes. Similarly around 40 bases of RNA were protected in 30S particles. These sequences represent discrete regions of the adenovirus genome. Especially sequences complementary to the EcoRI-F fragment encoding the first leader and the major intron for the DNA binding protein (DBP) RNA precursor, were analysed in detail. Tentatively, sequences resistant to RNase A were located in the middle of the intron and at the splice-donor junction of the first leader of the DBP precursor RNA. The same sequences were identified irrespective whether hnRNP complexes or 30S particles were used suggesting that 30S particles originate from hnRNP complexes. A 38.000 dalton protein appears to be in direct contact with RNA sequences complementary to the EcoRI-F fragment.  相似文献   

8.
9.
Receptor-chromatin complexes were recovered from prostatic chromatin digested with micrococcal nuclease. The fragments of chromatin were separated on linear 7.6 to 76% (v/v) glycerol density gradients. With extensive digestion of DNA, receptor labeled with [1,2-3H]dihydrotestosterone was released from the chromatin. After 5% digestion of DNA to acid-soluble products, only a trace amount of labeled receptor was detected in the unbound form. In the latter instance, most of the labeled receptor was recovered from the gradients in association with five A260 peaks representing oligomeric and monomeric nucleosomes with a repeat length of 182 +/- 14 (mean +/- S.D.) base pairs. The concentration of receptors was highest in the A260 peaks, which contained large oligomers of nucleosomes, and lowest in fractions containing primarily monomer structures. Hence, the extent to which receptors remained bound to chromatin was dependent on the relative amount of intact, linker DNA present.  相似文献   

10.
11.
12.
13.
RNA molecules from nuclear and cytoplasmic polyribosomes of adenovirus-infected HeLa cells were compared by hybridization to analyse the sequence content. Nuclear polyribosomes were released by exposure of intact detergent-washed nuclei to poly(U) and purified. Cytoplasmic polyribosomes were also purified from the same cells. To show that nuclear polyribosomes contain ribosomes linked by mRNA, polyribosomes were labelled with methionine and uridine in the presence of actinomycin D in adenovirus-infected cells. Purified nuclear polyribosomes were treated with EDTA under conditions which dissociate polyribosomes into ribosomes and subunits with a simultaneous release of mRNA, and sedimented. The treatment dissociated these polyribosomes, releasing the mRNA from them. Radiolabelled total RNA from each polyribosome population was fractionated in sucrose gradients into several pools or hybridized to intact adenovirus DNA to select virus-specific RNA. Sucrose-gradient-fractionated pool-3 RNA (about 28S) and virus-specific RNA were then hybridized to fragments of adenovirus DNA cleaved by restriction endonucleases SmaI, HindIII and EcoRI by the Southern-blot technique and by filter hybridization. The results showed that nuclear RNA contained sequences, from about 0 to 18 map units, which were essentially absent from cytoplasmic RNA. Furthermore, the amount of virus-specific RNA for a particular sequence was also different in the two populations.  相似文献   

14.
The double-stranded DNA from a soluble DNA replication complex that was labeled with deoxyribonucleoside triphosphates and completed in vitro was digested with EcoRI, Sma I, and Hpa I restriction endonucleases. All regions of the adenovirus type 2 genome were labeled in vitro, but restriction fragments derived from the ends of the DNA molecules were relatively more highly labeled than those derived from internal regions. The in vitro endogenous DNA polymerase reaction also exhibited strand-specific labeling near the molecular ends, in that restriciton fragments from the left end were labeled predominantly in the r strand and fragments from the right end were labeled predominantly in the l strand.  相似文献   

15.
16.
RNA polymerase of Escherichia coli was allowed to bind to labeled T4 or T7 bacteriophage DNA. The unbound and “weakly” bound polymerase molecules were removed by adding an excess of poly(I) which has a high affinity for the enzyme (Bautz et al., 1972). After the unbound DNA regions were digested with pancreatic DNAase and snake venom phosphodiesterase, the “protected” DNA-RNA polymerase complexes were isolated by Sephadex G200 column chromatography. The protected DNA sites were then isolated by phenol extraction and hydroxylapatite chromatography. Studies of the DNA recognition regions led to the following conclusions. (1) No binding is observed in the absence of the sigma subunit or at low temperatures. (2) The amount of protection ranges from 0·18% to 0·24% of T4 DNA and from 0·25% to 0·34% of T7 DNA. In the absence of poly(I), higher protections are observed and the protected regions display heterogeneity in size and secondary structure. (3) The protected regions are double-stranded, as shown by hydroxylapatite chromatography, base composition analysis, and thermal chromatography. (4) The length of the protected regions comprise about 50 to 55 nucleotide pairs, as suggested by end-group analysis, sucrose density-gradient centrifugation, and polyacrylamide gel electrophoresis. (5) The results suggest the interaction of dimeric polymerase molecules at these sites. On the basis of DNA sizes, there are 7 to 9 such sites on T4 DNA and 2 to 3 on T7 DNA. (6) The protected regions are high in (A + T): 68% for T4 and 62% for T7 DNA. (7) Thermal chromatograms reflect these base compositions and suggest the homogeneity of these regions with respect to size and base composition.  相似文献   

17.
18.
19.
Structural studies of turnip crinkle virus have been extended to include the identification of high-affinity coat protein binding sites on the RNA genome. Virus was dissociated at elevated pH and ionic strength, and a ribonucleoprotein complex (rp-complex) was isolated by chromatography on Sephacryl S-200. Genomic RNA fragments in the rp-complex, resistant to RNase A and RNase T1 digestion and associated with tightly bound coat protein subunits, were isolated using coat-protein-specific antibodies. The identity of the protected fragments was determined by direct RNA sequencing. These approaches allowed us to study the specific RNA-protein interactions in the rp-complex obtained from dissociated virus particles. The location of one protected fragment downstream from the amber terminator codon in the first and largest of the three viral open reading frames suggests that the coat protein may play a role in the regulation of the expression of the polymerase gene. We have also identified an additional cluster of T1-protected fragments in the region of the coat protein gene that may represent further high-affinity sites involved in assembly recognition.  相似文献   

20.
L H Augenlicht 《Biochemistry》1979,18(17):3780-3786
The rapidly labeled nuclear ribonucleic acid in human carcinoma cells which is protected by protein from digestion by staphylococcal nuclease (EC 3.1.4.7) has been investigated. A simple and discrete sequence specificity was not found, but the protected RNA fragments are rich in G + C and were shown by fingerprinting to comprise a nonrandom subset of all heterogeneous nuclear ribonucleic acid (hnRNA) sequences enriched in the sequences AGC, GGC, AGGC, and GAGC. There was no detectable enrichment for dougble-stranded RNA in the protected fraction. These data provide the first evidence that the association of any protein with hnRNA is nonrandom with respect to nucleotide sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号