首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
We have developed a new research tool for the study of S-adenosylmethionine (AdoMet) metabolism by cloning the coliphage T3 AdoMet hydrolase (AdoMetase; EC 3.3.1.2) gene into the M13mp8 expression vector. The recombinant bacteriophage clones expressed an AdoMetase activity in Escherichia coli like that found in T3-infected cells. High levels of AdoMetase expression impaired AdoMet-mediated activities such as dam and dcm methylase-directed DNA modifications and the synthesis of spermidine from putrescine. Expression vectors containing the cloned AdoMetase gene thus provide an alternate approach to the use of chemical inhibitors or mutants defective in AdoMet biosynthesis to probe the effect of AdoMet limitation.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Ribosome-protected regions have been isolated and analyzed from the bacteriophage T7 gene 0.3 mRNA labeled in vivo. Two discrete sites which are nearly equally protected by ribosomes are obtained from what was previously assumed to be a monocistronic message. Use of appropriate T7 deletion mutant RNAs has allowed mapping of both ribosome-recognized regions. Site a is positioned very close to the 5′ terminus of the mRNA and is apparently the initiator region for the major gene 0.3 protein, which acts to overcome the host DNA restriction system. Site b is located within several hundred nucleotides of the 3′ end of the RNA and probably initiates synthesis of a small polypeptide of unknown function. Both ribosome binding sites exhibit features common to other initiator regions from Escherichia coli and bacteriophage mRNAs. The proximity of site a to the RNase III cleavage site at the left end of gene 0.3 may explain why processing by RNase III is required for efficient translation of the major gene 0.3 protein.  相似文献   

9.
10.
11.
The enzymatic cleavage of double-stranded (ds) RNA is an obligatory step in the maturation and decay of many cellular and viral RNAs. The primary agents of dsRNA processing are members of the ribonuclease III (RNase III) superfamily, which are highly conserved in eukaryotic and bacterial cells. Escherichia coli RNase III participates in the maturation of the ribosomal RNAs and in the maturation and decay of cellular and phage mRNAs. E. coli RNase III-dependent cleavage events can regulate gene expression by controlling mRNA stability and translational activity. RNase III recognizes its substrates and selects the scissile phosphodiester(s) by recognizing specific RNA sequence and structural elements, termed reactivity epitopes. Some E. coli RNase III substrates contain an internal loop, in which is located the single scissile phosphodiester. The specific features of the internal loop that establish the pattern of single-strand cleavage are not known. A mutational analysis of the asymmetric [4 nt/5 nt] internal loop of the phage T7 R1.1 substrate reveals that cleavage reactivity is largely independent of internal loop sequence. Instead, the [4/5] asymmetry per se is the primary determinant of cleavage of a single bond within the 5 nt strand of the internal loop. The T7 R1.1 internal loop lacks elements of local tertiary structure, as revealed by sensitivity to cleavage by terbium ion and by the ability of the internal loop to destabilize a small model duplex. The internal loop functions as a discrete structural element in that the pattern of cleavage can be controlled by the specific type of asymmetry. The implications of these findings are discussed in light of RNase III substrate function as a gene regulatory element.  相似文献   

12.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

13.
14.
The cleavage specificity of RNase III.   总被引:17,自引:7,他引:10       下载免费PDF全文
We determined sites in lambda cII mRNA that are cleaved by RNase III in the presence of lambda OOP antisense RNA, using a series of OOP RNAs with different internal deletions. In OOP RNA-cII mRNA structures containing a potential region of continuous double-stranded RNA bounded by a non-complementary unpaired region, RNase III cleaved the cII mRNA at one or more preferred sites located 10 to 14 bases from the 3'-end of the region of continuous complementarity. Cleavage patterns were almost identical when the presumptive structure was the same continuously double-stranded region followed by a single-stranded bulge and a second short region of base pairing. The sequences of the new cleavage sites show generally good agreement with a consensus sequence derived from thirty-five previously determined cleavage sequences. In contrast, four 'non-sites' at which cleavage is never observed show poor agreement with this consensus sequence. We conclude that RNase III specificity is determined both by the distance from the end of continuous pairing and by nucleotide sequence features within the region of pairing.  相似文献   

15.
16.
Members of the RNase III family are found in all species examined with the exception of archaebacteria, where the functions of RNase III are carried out by the bulge-helix-bulge nuclease (BHB). In bacteria, RNase III contributes to the processing of many noncoding RNAs and directly cleaves several cellular and phage mRNAs. In eukaryotes, orthologs of RNase III participate in the biogenesis of many miRNAs and siRNAs, and this biogenesis initiates the degradation or translational repression of several mRNAs. However, the capacity of eukaryotic RNase IIIs to regulate gene expression by directly cleaving within the coding sequence of mRNAs remains speculative. Here we show that Rnt1p, a member of the RNase III family, selectively inhibits gene expression in baker's yeast by directly cleaving a stem-loop structure within the mRNA coding sequence. Analysis of mRNA expression upon the deletion of Rnt1p revealed an upregulation of the glucose-dependent repressor Mig2p. Mig2p mRNA became more stable upon the deletion of Rnt1p and resisted glucose-dependent degradation. In vitro, Rnt1p cleaved Mig2p mRNA and a silent mutation that disrupts Rnt1p signals blocked Mig2p mRNA degradation. These observations reveal a new RNase III-dependent mechanism of eukaryotic mRNA degradation.  相似文献   

17.
18.
Gene 1 of bacteriophage T7 early region--the RNA polymerase gene--is very actively translated during the infectious cycle of this phage. A 29 base pair fragment of its ribosome binding site containing the initiation triplet, the Shine-Dalgarno sequence (S-D), 10 nucleotides (nt) upstream and 6 nt downstream of these central elements was cloned into a vector to control the expression of the mouse dihydrofolate reductase gene (dhfr). Although all essential parts of this translation initiation region (TIR) should be present, this fragment showed only very low activity. Computer analysis revealed a potentially inhibitory hairpin binding the S-D sequence into its stem base paired to vector-derived upstream sequences. Mutational alterations demonstrated that this hairpin was not responsible for the low activity. However, addition of 21 nt of the T7 gene 1 upstream sequence to the 29 base pair fragment were capable of increasing the translational efficiency by one order of magnitude. Computer analysis of this sequence, including nucleotide shuffling, revealed that it contains a highly unstructured region lacking mRNA secondary structures but with a hairpin at its 5' end, here formed solely by T7 sequences. There was not much difference in activity whether the mRNA included or lacked vector-derived sequences upstream of the hairpin. Such highly unstructured mRNA regions were found in all very efficiently expressed T7 genes without any obvious sequence homologies. The delta G values of these regions were higher, i.e. potential secondary structural elements were fewer, than in TIR of genes from E. coli. This is likely due to the fact that T7 as a lytic phage is relying for successful infection on much stronger signals which a cell cannot afford because of the indispensable balanced equilibria of its interdependent biochemical processes. When the 5' ends of efficient T7 gene mRNA are formed by the action of RNase III they generally start with an unstructured region. Efficiently expressed T7 genes within a polycistronic mRNA, however, always contain a hairpin preceding the structure free sequence. We suggest that the formation of this 5' hairpin is releasing enough energy to keep the unstructured regions free of secondary RNA structures for sufficient time to give ribosomes and factors a good chance for binding to the TIR. In addition, sequences further downstream of the start codon give rise to an additional increase in efficiency of the TIR by almost two orders of magnitude.  相似文献   

19.
Complementary DNA sequences and structural genes encoding the atrial natriuretic peptide precursor (prepro-ANP) have been cloned. Analysis of DNA sequences, complementary to rat atrial prepro-ANP mRNA, has revealed that the various natriuretic peptides isolated from rat atrium reside at the carboxy terminus of a 152-amino-acid precursor protein. The human gene, comprised of three exons and two intervening sequences, encodes a protein of 151 amino acids highly homologous to the rat precursor. Although putative proteolytic processing sites can be identified throughout the prepro-ANP amino acid sequence, the natural form of the mature ANP has not been identified. Therefore, the sites and mechanisms of prepro-ANP processing to mature peptides forms are unknown. However, the successful cloning of the prepro-ANP gene and corresponding cDNAs provide the necessary molecular tools to address these fundamental questions relating to the regulation of ANP synthesis and processing in atrial and extraatrial tissues.  相似文献   

20.
Bacterial ribonuclease III (RNase III) belongs to the RNase III enzyme family, which plays a pivotal role in controlling mRNA stability and RNA processing in both prokaryotes and eukaryotes. In the Vibrio vulnificus genome, one open reading frame encodes a protein homologous to E. coli RNase III, designated Vv-RNase III, which has 77.9 % amino acid identity to E. coli RNase III. Here, we report that Vv-RNase III has the same cleavage specificity as E. coli RNase III in vivo and in vitro. Expressing Vv-RNase III in E. coli cells deleted for the RNase III gene (rnc) restored normal rRNA processing and, consequently, growth rates of these cells comparable to wild-type cells. In vitro cleavage assays further showed that Vv-RNase III has the same cleavage activity and specificity as E. coli RNase III on RNase III-targeted sequences of corA and mltD mRNA. Our findings suggest that RNase III-like proteins have conserved cleavage specificity across bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号