首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the polymerase chain reaction (PCR), we have amplified and characterized partial nucleotide sequences of two distinct insulin-like growth factor-I genes (designated IGF-I' and IGF-I") from the amphibian, Xenopus laevis. The amplified fragments encoded much of the coding region of the mature peptide (exon III in mammalian IGF-I genes), and exhibited 93% similarity to each other, and 68-82% similarity to mammalian IGF-I amino acid sequences. Southern blot analysis using genomic DNA from a homozygous frog revealed that these two genes are nonallelic in a single organism, like the two nonallelic genes encoding Xenopus insulins that we have characterized previously. Furthermore, both IGF-I mRNAs are expressed in similar quantities in adult liver.  相似文献   

2.
The insulin-like growth factors (IGF) play an important role in fetal and postnatal development. Recently, the nucleotide sequences of the cDNAs encoding IGF-I and IGF-II and part of the human IGF genes were reported. In this communication we describe two distinct IGF-II cDNAs isolated from a human adult liver and a human hepatoma cDNA library, respectively. Using these two cDNAs, we have established that the human IGF-II gene contains at least 7 exons. Two different IGF-II promoters have been identified, 19 kilobases (kb) apart, which are active in a development-specific manner. The promoter, active in the adult stage, is located only 1.4 kb downstream from the insulin gene.  相似文献   

3.
4.
We have compared the characteristics of IGF-I and insulin receptors in placentas of normals and insulin dependent diabetic patients. Specific binding of both IGF-I and insulin in placental membranes from patients with good glycemic control (as reflected by blood hemoglobin content) was unaltered while that in the placental membranes from the patients with poor glycemic control was increased to approximately 20% of the normals. This observed small but significant (p less than 0.05) increase in binding of IGF-I and insulin to placental membranes from diabetic patients with poor glycemic control was further magnified, approximately twice (p less than 0.001) the normal, when the membrane receptors were purified by lectin chromatography. The kinetic analysis of IGF-I and insulin binding in both membranes and lectin purified receptors revealed that the increased binding of insulin and IGF-I to the placentas from diabetic patients with poor glycemic control was due to an approximately 2 fold increase (p less than 0.001-0.05) in the receptor numbers without any significant changes of the affinities. The molecular characteristics of the receptors in these diabetic patients, as revealed by the cross-linking studies, did not reveal any changes when compared to the normals. The parallel changes of IGF-I and insulin receptors, shown here, are in accordance with the homologous nature of these two receptors. The increased receptor numbers of these two interrelated hormones in placentas of diabetics with poor glycemic control may be relevant to the altered placental functions in diabetic pregnancy.  相似文献   

5.
Insulin-like growth factor binding protein-6 binds insulin-like growth factor-II with a marked preferential affinity over insulin-like growth factor-I. The kinetic basis of this binding preference was studied using surface plasmon resonance. Binding of insulin-like growth factor-I and insulin-like growth factor-II to immobilized insulin-like growth factor binding protein-6 fitted a two-site binding kinetic model. Insulin-like growth factor-I and insulin-like growth factor-II association rates were similar whereas the dissociation rate was approximately 60-fold lower for insulin-like growth factor-II, resulting in a higher equilibrium binding affinity for insulin-like growth factor-II. The equilibrium binding affinities of a series of insulin-like growth factor-II mutants were also explained by differential dissociation kinetics. O-glycosylation had a small effect on the association kinetics of insulin-like growth factor binding protein-6. The insulin-like growth factor binding properties of insulin-like growth factor binding protein-6 are explained by differential dissociation kinetics.  相似文献   

6.
Recent evidence suggests that a regulated insulin-like growth factor (IGF) system mediates the effects of estrogen, promoting the proliferation and differentiation of specific uterine cell types throughout the estrous cycle and during gestation in the rodent. Previous studies have shown that IGFs are differentially expressed in the mouse uterus during the periimplantation period. In the current study, we examined the expression of IGF binding protein-4 (IGFBP-4), IGF-I receptor (IGF-IR), and IGF-I in the mouse uterus throughout the estrous cycle. Ligand blot analysis was conducted on uterine homogenates using [125I]IGF-I. IGFBP-4 was detected in all uterine homogenates, varying in intensity throughout the estrous cycle. In situ hybridization studies at metestrus and diestrus demonstrated an intense IGFBP-4 mRNA signal in antimesometrial stromal cells between the luminal epithelium and the myometrium, but at proestrus and estrus, no IGFBP-4 signal was detected. No IGF-I mRNA was detected at any stage of the estrous cycle by in situ hybridization. However, by RT-PCR analysis, IGF-I mRNA was detected at all stages of the estrous cycle. RT-PCR analysis also showed IGF-IR mRNA throughout the estrous cycle. Using immunohistochemistry, IGF-IR immunostaining was detected throughout the estrous cycle and on days 2-7 of gestation, but was restricted to the glandular epithelium. These results suggest that uterine IGFBP-4 expression may not be dependent on uterine IGF-I expression. They also suggest that IGFBP-4 may play a role in uterine physiology independent of the inhibition of IGF-I action, and that IGF-IR is constitutively expressed in the mouse uterus.  相似文献   

7.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

8.
To evaluate the regulation of ovarian insulin-like growth factor-I (IGF-I) during follicular growth in vivo, we measured the concentration of this peptide in follicular fluid (FFL) of immature gilts during the induction of follicular development by pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). FFL concentrations of immunoreactive (i) IGF-I were compared with those of intrafollicular steroids and with concentrations of iIGF-I, estradiol (E2), and porcine growth hormone (GH) in serum. PMSG, administered at Time 0, induced a significant (p less than 0.01), time-dependent increase in intrafollicular iIGF-I that peaked 72 h after administration of the hormone, before the administration of hCG. During the first 72 h, the changes in ovarian iIGF-I paralleled those for progesterone and E2. After the administration of hCG at 72 h, FFL levels of E2 fell, those of iIGF-I remained constant, and progesterone rose. Serum E2 concentrations paralleled those in FFL. Since serum GH and IGF-I levels rise during spontaneous puberty in some species, these levels were also monitored. However, a significant treatment effect on serum GH and iIGF-I was not demonstrated. In summary, ovarian concentrations of iIGF-I are increased by gonadotropic hormones in vivo. The absence of concomitant changes in circulating levels of iIGF-I and GH suggests that the gonadotropin effects are exerted directly on the ovary. These results, together with more abundant data regarding secretion and action of IGF-I in cultured granulosa cells, suggest that IGF-I may function in an autocrine or paracrine fashion to amplify the actions of gonadotropins at an ovarian level.  相似文献   

9.
We have mapped the vinculin-binding sites in the cytoskeletal protein talin as well as those sequences which target the talin molecule to focal contacts. Using a series of overlapping talin-fusion proteins expressed in E. coli and 125I-vinculin in both gel-overlay and microtitre well binding assays, we present evidence for three separable binding sites for vinculin. All three are in the tail segment of talin (residues 434-2541) and are recognized by the same fragment of vinculin (residues 1-258). Two sites are adjacent to each other and span residues 498-950, and the third site is more than 700 residues distant in the primary sequence. Scatchard analysis of 125I-vinculin binding to talin also indicates three sites, each with a similar affinity (Kd = 2- 6 x 10(-7) M). We also detect a substoichiometric interaction of higher affinity (Kd = 3 x 10(-8) M) which remains unexplained. By expressing regions of the chicken talin molecule in heterologous cells, we have shown that the sequences required to target talin to focal contacts overlap those which bind vinculin.  相似文献   

10.
A membrane preparation, the R3, obtained by differential centrifugation of rat placental homogenates is enriched in receptors that bind insulin-like growth factor II (IGF-II) preferentially and with avidity (Daughaday, W.H., Mariz, I.K., and Trivedi, B. (1981) J. Clin. Endocrinol. Metab. 53, 282-288). When this preparation was incubated with 2% (w/v) octyl-beta-D-glucopyranoside for 60 min at 0-4 degrees C, 60% of the membrane protein was solubilized without loss of binding activity. The 125I-IGF-II binding properties of the detergent-solubilized receptors were found to be similar to those of the membrane-associated receptor. The rate constants for association, ka, and dissociation, kd, and equilibrium dissociation constant, KD, were 8.5 X 10(8) M-1 min-1, 7.5 X 10(-3) min-1, and 1.3 nM for the detergent-solubilized receptors and 5.3 X 10(8) M-1 min-1, 4.2 X 10(-3) min-1, and 0.6 nM for the membrane receptors. Gel chromatography on Sephacryl S-300 concentrated the solubilized receptors into a major peak of binding activity with a Stokes radius of 7.2 nm; a second peak of less specific binding had a Stokes radius of 4.3 nm. The receptors in the major peak bound 125I-IGF-II with a KD of 0.6 nM; the total binding capacity, Ro, was 21.6 pmol mg of protein-1 compared to 1.6 pmol mg of protein-1 for the membrane-associated receptor. Centrifugation of the receptors on 5-20% (w/v) gradients of sucrose in H2O or D2O disclosed a heterogeneous pattern of receptor distribution. When they were labeled with 125I-IGF-II prior to centrifugation, a major form of the receptor with a sedimentation constant, S20,w, of 9.9 X 10(13) s and other, possibly smaller, forms of the receptor were observed. However, only the 9.9 s20,w form of the receptor was observed if it was labeled with 125I-IGF-II subsequent to centrifugation. Based on these hydrodynamic measurements and a partial specific volume of 0.72 cm3/g, the IGF-II receptor was calculated to have a Mr of 290,000 and frictional ratio, f/fo, of 1.6. This value for the Mr is similar to the mass of 220,000 or 250,000 Dal determined by cross-linking 125I-IGF-II to the membrane- or detergent-solubilized receptors with disuccimidyl suberate and separating the complex by electrophoresis in sodium dodecyl sulfate-containing polyacrylamide gels in the absence or presence of dithiothreitol, respectively.  相似文献   

11.
Current evidence supports a binding model in which the insulin molecule contains two binding surfaces, site 1 and site 2, which contact the two halves of the insulin receptor. The interaction of these two surfaces with the insulin receptor results in a high affinity cross-linking of the two receptor alpha subunits and leads to receptor activation. Evidence suggests that insulin-like growth factor-I (IGF-I) may activate the IGF-I receptor in a similar mode. So far IGF-I residues structurally corresponding to the residues of the insulin site 1 together with residues in the C-domain of IGF-I have been found to be important for binding of IGF-I to the IGF-I receptor (e.g. Phe(23), Tyr(24), Tyr(31), Arg(36), Arg(37), Val(44), Tyr(60), and Ala(62)). However, an IGF-I second binding surface similar to site 2 of insulin has not been identified yet. In this study, we have analyzed whether IGF-I residues corresponding to the six residues of the insulin site 2 have a role in high affinity binding of IGF-I to the IGF-I receptor. Six single-substituted IGF-I analogues were produced, each containing an alanine substitution in one of the following positions (corresponding insulin residues in parentheses): Glu(9) (His(B10)), Asp(12) (Glu(B13)), Phe(16) (Leu(B17)), Asp(53) (Ser(A12)), Leu(54) (Leu(A13)), and Glu(58) (Glu(A17)). In addition, two analogues with 2 and 3 combined alanine substitutions were also produced (E9A,D12A IGF-I and E9A,D12A,E58A IGF-I). The results show that introducing alanine in positions Glu(9), Asp(12), Phe(16), Leu(54), and Glu(58) results in a significant reduction in IGF-I receptor binding affinity, whereas alanine substitution at position 53 had no effect on IGF-I receptor binding. The multiple substitutions resulted in a 33-100-fold reduction in IGF-I receptor binding affinity. These data suggest that IGF-I, in addition to the C-domain, uses surfaces similar to those of insulin in contacting its cognate receptor, although the relative contribution of the side chains of homologous residues varies.  相似文献   

12.
13.
AIM: To report effects of weight-based recombinant human insulin-like growth factor-I (rhIGF-I) on IGF axis parameters in children with hyperinsulinism. METHODS: Open label trial with subcutaneous rhIGF-I (40 microg/kg/dose). Patients studied were children (1 month to 11 years) with diffuse hyperinsulinism (n = 7). Serial serum IGF and insulin-like growth factor binding protein (IGFBP) concentrations were measured by RIA and analyzed by linear Pearson regression. RESULTS: Following the initial rhIGF-I dose, total insulin-like growth factor-I (IGF-I) rose by 56% at 30 min (p < 0.01) and 85% at 120 min (p < 0.02). Serum IGF-II, IGFBP-2, and IGFBP-3 levels did not change. Peak serum IGF-I levels within 12 h of the initial rhIGF-I dose were 167-700 mg/ml. The variable peak IGF-I response is attributable in part to IGFBP-3 differences across this pediatric age range. Models of rhIGF-I dosing based upon body surface area (BSA) or initial IGFBP-3 resulted in predictable peak serum IGF-I levels (r = 0.78; p < 0.03). Recalculating rhIGF-I dosing based upon the BSA . IGFBP-3 product correlated closely with peak IGF-I level (r = 0.85; p < 0.007). CONCLUSIONS: Weight-based IGF-I dosing in this cohort resulted in variable IGF-I levels. Considering BSA and serum IGFBP-3 concentration in children is appropriate for subcutaneous IGF-I administration. A combination of these values may yield predictable individualization of rhIGF-I dosing.  相似文献   

14.
The multi-functional proteins, insulin-like growth factor-I (IGF-I) and leptin were present in seminal plasma from different species. Concentrations of IGF-I in equine and porcine semen were 20 and 17.5 ng/ml, respectively. Seminal plasma concentrations of leptin were 1 ng/ml in human and 11 ng/ml in porcine samples.  相似文献   

15.
The immunological properties of human, bovine and rat insulin-like growth factors (IGF) and insulin were compared in competitive binding studies with Tr10 and NPA polyclonal antisera raised in rabbits against human IGF-1. Bovine IGF-1 was 11-19% as effective as human IGF-1 in competing for binding with 125I-labelled human IGF-1, whereas IGF-2 reacted poorly and insulin did not compete. Similar competitive binding curves were obtained with the mouse monoclonal anti-(human IGF-1) antibody 3D1, except that bovine IGF-1 showed a severalfold greater affinity for the monoclonal antibody than for either polyclonal antiserum. Membranes isolated from human placenta, sheep placenta and foetal-human liver were used as sources of cellular receptors. In human placental membranes, most of the binding of IGF-1 tracers could be attributed to a type-1 receptor, because insulin inhibited up to 65% of tracer binding. The other two tissues apparently contain only type-2 receptors, as evidenced by the very low potency of bovine or human IGF-1 in competing for binding with IGF-2 tracers and the absence of any competition by insulin. In competition for binding with labelled bovine or human IGF-1 to human placental membranes, bovine IGF-1 had a similar potency to human IGF-1, whereas bovine IGF-1 was more potent in binding studies with tissues rich in type-2 receptors. Rat IGF-2 was considerably less effective than human IGF-2 in competition for receptors on any of the membrane preparations.  相似文献   

16.
We have recently reported that the expression of an in vitro mutated, kinase-defective insulin receptor (A/K1018) leads to cellular insulin resistance when expressed in Rat 1 fibroblasts. That is, despite the presence of normal numbers of activatable native insulin receptors in the host cell, the A/K1018 receptors prevent the normal receptors from phosphorylating endogenous substrates and from signalling insulin action, perhaps by competing for limiting amounts of these substrates. We report here that insulin-like growth factor I-stimulated phosphorylation of two endogenous substrate proteins, pp220 and pp170, is also inhibited in cells expressing A/K1018 receptors. Because insulin-like growth factor I stimulation of glucose uptake is not inhibited in cells with A/K1018 receptors while pp220 and pp170 phosphorylation is inhibited, it is unlikely that either pp220 or pp170 are involved in mediating the stimulation of glucose transport. In contrast, insulin-like growth factor I-mediated stimulation of mitogenesis is inhibited in cells with A/K1018 receptors. Thus, pp170 or pp220 could be involved in mitogenic signalling. We also report that both H2O2 and tetradecanoylphorbolacetate stimulate glucose transport normally in cells with A/K1018 receptors. Phorbol esters also lead to the phosphorylation of both normal and A/K1018 receptors on serine and/or threonine. This argues that phorbol esters or H2O2 bypass the normal proximal steps in signalling insulin action.  相似文献   

17.
B Bhaumick  R M Bala 《Life sciences》1989,44(22):1685-1696
Autophosphorylation of insulin and insulin-like growth factor (IGF)-I receptors were measured in lectin purified receptor preparations from placentas of normal and diabetic patients. The basal and insulin or IGF-I stimulated phosphorylation of the approximately 94 kD protein, corresponding to beta-subunit of the insulin and IGF-I receptors, were approximately 2 times greater (p less than 0.05) in placentas from diabetic patients with poor glycemic control (as judged by their serum HbA1c level) compared to the normals. The magnitude of IGF-I or insulin stimulation of the phosphorylation of the 94 kD protein was comparable in placentas from both diabetic and normal patients. Immunoprecipitation and immunodepletion of IGF-I receptor by alpha-IR3, a monoclonal antibody to IGF-I receptor, revealed the increased basal phosphorylation of the approximately 94 kD protein in placentas of diabetic patients to be associated with IGF-I and insulin receptors. The magnitude of IGF-I and insulin stimulated phosphorylation of the immunoprecipitated and immunodepleted IGF-I receptor, respectively, was the same in both normal and diabetic patients. These results suggested that the increased basal phosphorylation of the 94 kD protein in placentas from diabetic patients may be intrinsic to IGF-I and insulin receptor, however, the regulatory mechanisms effecting the increase may not be dependent on IGF-I or insulin.  相似文献   

18.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

19.
Although insulin-like growth factors (IGF) I and II bind with high affinity to structurally discrete receptors, they bind with a lesser affinity to each other's receptor. We have evaluated the affinity of five different IGF-I preparations (three natural IGF-I preparations, one synthetic preparation, and one recombinant DNA-derived) for the IGF-II receptor in rat placental membranes, 18-54,SF cells and BRL-3A cells. In all tissues tested, the natural IGF-I preparations demonstrated an affinity for the IGF-II receptor which was 10-20% that of IGF-II. However, the recombinant and synthetic IGF-I preparations exhibited substantially lower affinities than natural IGF-I for this receptor, with only 10-25% reduction in (125-I)iodo IGF-II binding at peptide concentrations up to 400 ng/ml. Radioimmunoassay of the natural IGF-I preparations with an antibody directed against the unique C-peptide region of IGF-II demonstrated that contamination of IGF-I preparations with immunoreactive IGF-II could not exceed 5%. These results demonstrate that IGF-I purified from human plasma has a different affinity for the IGF-II receptor than does synthetic or recombinant IGF-I. Furthermore, these data are consistent with the hypothesis that IGF-I, itself, may be heterogeneous, and that subforms may vary in their affinities for the IGF receptors. Alternatively, IGF-I preparations which have been considered to be pure may be contaminated with small amounts of IGF-II, resulting in overestimation of the affinity of IGF-I for the type II IGF receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号