首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusi S  Asaad WF  Miller EK  Wang XJ 《Neuron》2007,54(2):319-333
Volitional behavior relies on the brain's ability to remap sensory flow to motor programs whenever demanded by a changed behavioral context. To investigate the circuit basis of such flexible behavior, we have developed a biophysically based decision-making network model of spiking neurons for arbitrary sensorimotor mapping. The model quantitatively reproduces behavioral and prefrontal single-cell data from an experiment in which monkeys learn visuomotor associations that are reversed unpredictably from time to time. We show that when synaptic modifications occur on multiple timescales, the model behavior becomes flexible only when needed: slow components of learning usually dominate the decision process. However, if behavioral contexts change frequently enough, fast components of plasticity take over, and the behavior exhibits a quick forget-and-learn pattern. This model prediction is confirmed by monkey data. Therefore, our work reveals a scenario for conditional associative learning that is distinct from instant switching between sets of well-established sensorimotor associations.  相似文献   

2.
According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject''s learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action selection required for decision making in ambiguous choice situations.  相似文献   

3.
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.  相似文献   

4.
Skilled grasp is a sensorimotor process requiring the brain to extract sensory cues from the environment to shape a motor command. Although a large body of literature has focused on which brain areas either integrate the visual object's properties or control the motor output, it is still unclear how grasp-related information is transferred from one area to another. Understanding interactions between brain areas is crucial for the study of visuomotor transformations. Recently, new advances in both human and non-human primates have shown it is possible to study cortico-cortical interactions during different task contexts. This sheds new light on how brain areas are integrated in a dynamic network for controlling grasping actions.  相似文献   

5.
Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task.  相似文献   

6.
Considerable knowledge is available on the neural substrates for speech and language from brain-imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and nonlinguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and is used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language.  相似文献   

7.
Cortical neurons that are selectively sensitive to faces, parts of faces and particular facial expressions are concentrated in the banks and floor of the superior temporal sulcus in macaque monkeys. Their existence has prompted suggestions that it is damage to such a region in the human brain that leads to prosopagnosia: the inability to recognize faces or to discriminate between faces. This was tested by removing the face-cell area in a group of monkeys. The animals learned to discriminate between pictures of faces or inanimate objects, to select the odd face from a group, to inspect a face then select the matching face from a pair of faces after a variable delay, to discriminate between novel and familiar faces, and to identify specific faces. Removing the face-cell area produced no or little impairment which in the latter case was not specific for faces. In contrast, several prosopagnosic patients were impaired at several of these tasks. The animals were less able than before to discern the angle of regard in pictures of faces, suggesting that this area of the brain may be concerned with the perception of facial expression and bearing, which are important social signals in primates.  相似文献   

8.
The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.  相似文献   

9.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.  相似文献   

10.
王敏  李葆明 《生命科学》2000,12(2):57-59,85
人和动物形成多样的、快速可变的刺激-反应联合关系的过程被称为条件性运动学习。条件性运动学习使得人和动物具有很强的适应优势。损毁或行为电生理研究表明:运动前区背外侧部、基底神经节以及前额叶皮层腹侧部在条件性运动学习中起至关重要的作用;海马在条件性运动学习中也起着一定的作用;而杏仁核等一些结构在条件性运动学习中不起作用。  相似文献   

11.

Background

In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated.

Methodology/Principal Findings

We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and grasp either a small stimulus using a precision grip (i.e., the opposition of index finger and thumb) or a large stimulus using a whole hand grasp (i.e., the flexion of all digits around the stimulus). Results revealed a time course of activation starting at the level of parietal regions and continuing at the level of premotor regions. More specifically, we show that activity within these regions was tuned for specific grasps well before movement onset and this early tuning was carried over - as evidenced by kinematic analysis - during the preshaping period of the task.

Conclusions/Significance

Data are discussed in terms of recent findings showing a marked differentiation across different grasps during premovement phases which was carried over into subsequent movement phases. These findings offer a substantial contribution to the current debate about the nature of the sensorimotor transformations underlying grasping. And provide new insights into the detailed movement information contained in the human preparatory activity for specific hand movements.  相似文献   

12.
A survey of the literature on learning by prosimian primates contradicts a traditional view that they are untrainable. They learn simple operants such as bar pressing readily, work well for the usual rewards, and respond in predictable fashion on schedules of partial reinforcement. Two-dimensional visual discriminations involving pattern and brightness also are learned, as are three-dimensional object discriminations. In the area of complex learning, they not only acquire a variety of difficult tasks, but they also reach a final level of performance that is at or near the level of anthropoids. In each of the following areas, at least one experiment is described in which a prosimian species did as well as one or more anthropoid species: object discrimination learning set, discrimination reversal, delayed response, instrumentation, oddity, and relational problems. The anthropoids to which they are most apt to compare favorably are New World monkeys, a group which they resemble physically, especially with respect to degree of manipulativeness, cortical development, and visual acuity.  相似文献   

13.
《Journal of Physiology》2013,107(3):219-229
Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson’s disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG–thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG–dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates.  相似文献   

14.
Antzoulatos EG  Miller EK 《Neuron》2011,71(2):243-249
Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel abstract, dot-based categories with a right versus left saccade. Early on, when they could acquire specific stimulus-response associations, striatum activity was an earlier predictor of the corresponding saccade. However, as the number of exemplars increased and monkeys had to learn to classify them, PFC activity began to predict the saccade associated with each category before the striatum. While monkeys were categorizing novel exemplars at a high rate, PFC activity was a strong predictor of their corresponding saccade early in the trial before the striatal neurons. These results suggest that striatum plays a greater role in stimulus-response association and PFC in abstraction of categories.  相似文献   

15.
Chowdhury SA  DeAngelis GC 《Neuron》2008,60(2):367-377
When a new perceptual task is learned, plasticity occurs in the brain to mediate improvements in performance with training. How do these changes affect the neural substrates of previously learned tasks? We addressed this question by examining the effect of fine discrimination training on the causal contribution of area MT to coarse depth discrimination. When monkeys are trained to discriminate between two coarse absolute disparities (near versus far) embedded in noise, reversible inactivation of area MT devastates performance. In contrast, after animals are trained to discriminate fine differences in relative disparity, MT inactivation no longer impairs coarse depth discrimination. This effect does not result from changes in the disparity tuning of MT neurons, suggesting plasticity in the flow of disparity signals to decision circuitry. These findings show that the contribution of particular brain area to task performance can change dramatically as a result of learning new tasks.  相似文献   

16.
Observing another person performing a complex action accelerates the observer’s acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects’ interest in the actions to be performed and functioned as a catalyst for executed action.  相似文献   

17.
According to most accounts, alarm calling in non-human primates is a biologically hardwired behaviour with signallers having little control over the acoustic structure of their calls. In this study, we compared the alarm calling behaviour of two adjacent populations of Diana monkeys at Taï forest (Ivory Coast) and Tiwai Island (Sierra Leone), which differ significantly in predation pressure. At Taï, monkeys regularly interact with two major predators, crowned eagles and leopards, while at Tiwai, monkeys are only hunted by crowned eagles. We monitored the alarm call responses of adult male Diana monkeys to acoustic predator models. We found no site-specific differences in the types of calls given to eagles, leopards and general disturbances, but there were consistent differences in how callers assembled calls into sequences. At Tiwai, males responded to leopards and general disturbances in the same way, while at Taï, males discriminated by giving call sequences that differed in the number of component calls. Responses to eagles were identical at both sites. We concluded that Diana monkeys are predisposed to use their repertoire in context-specific ways, but that ontogenetic experience determines how individual calls are assembled into meaningful sequences.  相似文献   

18.
Behavioral responses to a sensory stimulus are often guided by associative memories. These associations remain intact even when other factors determine behavior. The substrates of associative memory should therefore be identifiable by neuronal responses that are independent of behavioral choices. We tested this hypothesis using a paired-associates task in which monkeys learned arbitrary associations between pairs of visual stimuli. We examined the activity of neurons in inferior temporal cortex as the animals prepared to choose a remembered stimulus from a visual display. The activity of some neurons (22%) depended on the monkey's behavioral choice; but for a novel class of neurons (54%), activity reflected the stimulus that the monkey was instructed to choose, regardless of the behavioral response. These neurons appear to represent memorized stimulus associations that are stable across variations in behavioral performance. In addition, many neurons (74%) were modulated by the spatial arrangement of the stimuli in the display.  相似文献   

19.
20.
The insight that animals'' cognitive abilities are linked to their evolutionary history, and hence their ecology, provides the framework for the comparative approach. Despite primates renowned dietary complexity and social cognition, including cooperative abilities, we here demonstrate that cleaner wrasse outperform three primate species, capuchin monkeys, chimpanzees and orang-utans, in a foraging task involving a choice between two actions, both of which yield identical immediate rewards, but only one of which yields an additional delayed reward. The foraging task decisions involve partner choice in cleaners: they must service visiting client reef fish before resident clients to access both; otherwise the former switch to a different cleaner. Wild caught adult, but not juvenile, cleaners learned to solve the task quickly and relearned the task when it was reversed. The majority of primates failed to perform above chance after 100 trials, which is in sharp contrast to previous studies showing that primates easily learn to choose an action that yields immediate double rewards compared to an alternative action. In conclusion, the adult cleaners'' ability to choose a superior action with initially neutral consequences is likely due to repeated exposure in nature, which leads to specific learned optimal foraging decision rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号