首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of prolonged exercise on the glycogen level in the respiratory muscles (diaphragm--D, external intercostal--IE and internal--II) has been studied in four groups of rats: 1-control, 2-fasted for 24 h, 3-treated with nicotinic acid and 4-treated with propranolol. There was a sharp reduction in glycogen level in each muscle after 30 min exercise in the control and fasted groups. Exercise till exhaustion further lowered the glycogen level in D in the control group and in IE and II in the fasted group. In the fasted group, the level of glycogen in each muscle, at rest, and after 30 min exercise, and in IE and II muscles after exercise till exhaustion was lower than in the control group. Nicotinic acid did not affect the glycogen level either at rest or during exercise as compared with the control group. Propranolol increased the glycogen level in the muscles at rest and during 30 min exercise. It partially prevented glycogen mobilization in D and IE and fully in II during exercise till exhaustion. In the control group, 24 and 48 h after exercise till exhaustion, the level of glycogen in each muscle exceeded the resting control value. It is concluded that exercise-induced glycogen metabolism in the respiratory muscles differs in some respects from that in the limb or heart muscles.  相似文献   

2.
Previous work has suggested that preexercise "anticipatory" blood flow distribution in the muscles of rats is influenced by the intensity of the preceding conditioning or training program. The purpose of this study was to carefully control the conditioning programs for control, low-speed conditioned, and high-speed conditioned rats to determine the respective effects on preexercise mean arterial pressure (Pa), heart rate (HR), and blood flow distribution in muscles and other organs. Control (daily placement on treadmill, no exercise), low-speed conditioned (daily treadmill walking up a 12 degree incline at 15 m/min), and high-speed conditioned (daily treadmill galloping up a 12 degree incline at 50 m/min) rats were conditioned for 2-4 wk in their respective programs. On the experimental day, the circulatory variables were measured immediately before exercise by using the same preexercise regimen as during the conditioning sessions. Pa, HR, and blood flow distribution were the same in control and low-speed conditioned rats (P greater than 0.05). However, in high-speed conditioned rats, HR (+9%), Pa (+7%), and white gastrocnemius muscle (+46%) blood flow were higher than in controls (P less than 0.05). The higher white muscle flow was the result of the higher Pa and lower resistance to flow. These data demonstrate that specific changes in preexercise anticipatory blood flow distribution among muscles occur during exercise conditioning programs and that the changes are dependent on the intensity of the conditioning regimen. The mechanisms responsible for the adaptations are not known.  相似文献   

3.
4.
Substrate utilization after fructose, glucose, or water ingestion was examined in four male and four female subjects during three treadmill runs at approximately 75% of maximal O2 uptake. Each test was preceded by three days of a carbohydrate-rich diet. The runs were 30 min long and were spaced at least 1 wk apart. Exercise began 45 min after ingestion of 300 ml of randomly assigned 75 g fructose (F), 75 g glucose (G), or control (C). Muscle glycogen depletion determined by pre- and postexercise biopsies (gastrocnemius muscle) was significantly (P less than 0.05) less during the F trial than during C or G. Venous blood samples revealed a significant increase in serum glucose (P less than 0.05) and insulin (P less than 0.01) within 45 min after the G drink, followed by a decrease (P less than 0.05) in serum glucose during the first 15 min of exercise, changes not observed in the C or F trials. Respiratory exchange ratio was higher (P less than 0.05) during the G than C or F trials for the first 5 min of exercise and lower (P less than 0.05) during the C trial compared with G or F for the last 15 min of exercise. These data suggest that fructose ingested before 30 min of submaximal exercise maintains stable blood glucose and insulin concentrations, which may lead to the observed sparing of muscle glycogen.  相似文献   

5.
6.
To examine the significance of endogenous stores of glycogen in specific fiber types (I, IIa, IIb) of the costal region of the diaphragm, adult male Wistar rats performed continuous running (25 m/min, 8 degrees grade) exercise for either 30 min or until fatigue. At 30 min of exercise, glycogen loss, as measured microphotometrically using the periodic acid-Schiff technique averaged between 73 and 80% (P less than 0.05) in the different fiber types. When exercise was performed to exhaustion, representing an additional 94 min, no further reduction in glycogen was observed in any fiber type. Biochemical determinations of glycogen from the diaphragm confirmed the extensive reduction in glycogen concentration with exercise. Large reductions (P less than 0.05) in glycogen were also noted in the soleus, plantaris, and vastus lateralis red. Although significant depletion (P less than 0.05) occurred in the vastus lateralis white, it was not as pronounced as in these other muscles. Repletion to preexercise glycogen concentration was complete by 4 h of recovery in all muscles except the vastus lateralis white. It is concluded that endogenous glycogen is a significant substrate in all muscles sampled regardless of fiber composition. In the case of the costal region of the diaphragm, the increased work of breathing resulting from heavy exercise leads to the recruitment of all fiber types, and each fiber type depends on glycogen as a substrate at least early in the exercise.  相似文献   

7.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

8.
9.
10.
The effect of exercise of glycogen level in skeletal muscles and liver was studied in Wistar rats. The previously untrained animals were subjected to one-time exercise in form of swimming in water at 32 degrees C for 10, 20 and 30 min. The glycogen level in the muscles (in g per 100 g of tissue) fell down during the first 10 minutes of the exercise by a mean value of 0.45 g. During the following 10 minutes the decrease was smaller amounting on the average to 0.1 g. After 30 min the glycogen level in the muscles was about 0.1 g/100 g of tissue. Respective falls of glycogen level in the liver were on the average 0.99 g and 0.40 g/100 g of tissue. After 30 min of exercise the glycogen level in the liver was 1.2 g/100 g of tissue. The fall of glycogen level in the muscles was similar at all times during exercise in all animals, but in the liver fairly significant differences were observed in the first 10 min between individual groups of rats. Later on during exercise the differences in the liver glycogen falls decreased.  相似文献   

11.
The blood from the face flows into the intracranium through the ophthalmic veins when human subjects become hyperthermic. To investigate a possible mechanism underlying this change in direction of flow, five young men were subjected to either passive body warming or exercise on a cycle ergometer, in a climatic chamber whose air temperature and relative humidity were 28 degrees C and 40%. Tympanic (Tty) and oesophageal temperatures, forehead sweat rate (msw), skin blood flow (Qsk) and blood flow through the ophthalmic vein (Qov) were measured, and the mean skin (Tsk) and mean body (Tb) temperatures were computed. Passive body warming was induced by a box-shaped body warming unit enclosing all but the subject's head. Exercise was performed either at an intensity of 60% maximal oxygen consumption or with the intensity increasing in increments. During both tests, msw and Qsk started to increase shortly after the imposition of the heat load. The Qov began to change with the venous blood flowing from the face into the intracranium and a complete reversal in the direction of Qov (from the face to the intracranium) came significantly later than the increases in msw and Qsk. The Tty at the time of flow reversal was the same in both tests. The Tsk (and hence Tb) at flow reversal was, however, significantly higher during passive body warming than during exercise. The mechanism for switching the direction of Qov appeared to have been triggered by a high temperature in the brain, and not by thermal input from the periphery of the body.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The interactive effects of upper airway negative pressure and hypercapnia on the pattern of breathing were assessed in pentobarbital-anesthetized cats. At any given level of pressure in the upper airway, hypercapnia increased respiratory rate, reduced inspiratory time, and augmented tidal volume, inspiratory airflow, and the peak and rate of rise of diaphragm electrical activity. Conversely, at any given level of CO2, upper airway negative pressure decreased respiratory rate, prolonged inspiratory time, and depressed inspiratory airflow and diaphragm electromyogram (EMG) rate of rise. Application of negative pressure to the upper airway shifted the relationship between tidal volume and inspiratory time upward and rightward. The relationship between inspiratory and expiratory times, however, was linearly correlated over a wide range of chemical drives and levels of upper airway pressure. These results suggest that in the anesthetized cat upper airway negative pressure afferent inputs 1) interact in an additive fashion with hypercapnia to alter the pattern of breathing, 2) interact multiplicatively with CO2 to influence mean inspiratory airflow and diaphragm EMG rate of rise, 3) depress the generation of central inspiratory activity, 4) increase the time-dependent volume threshold for inspiratory termination, and 5) affect the ratio between inspiratory and expiratory times in a similar manner as alterations in PCO2.  相似文献   

13.
The purpose of this study was to examine the effects of pre-exercise glucose and fructose feedings on muscle glycogen utilization during exercise in six well-trained runners (VO2max = 68.2 +/- 3.4 ml X kg-1 X min-1). On three separate occasions, the runners performed a 30 min treadmill run at 70% VO2max. Thirty minutes prior to exercise each runner ingested 75 g of glucose (trial G), 75 g of fructose (trial F) or 150 ml of a sweetened placebo (trial C). During exercise, no differences were observed between any of the trials for oxygen uptake, heart rate or perceived exertion. Serum glucose levels were elevated as a result of the glucose feeding (P less than 0.05) reaching peak levels at 30 min post-feeding (7.90 +/- 0.24 mmol X l-1). With the onset of exercise, glucose levels dropped to a low of 5.89 +/- 0.85 mmol X l-1 at 15 min of exercise in trial G. Serum glucose levels in trials F and C averaged 6.21 +/- 0.31 mmol X l-1 and 5.95 +/- 0.23 mmol X l-1 respectively, and were not significantly different (P less than 0.05). There were also no differences in serum glucose levels between any of the trials at 15 and 30 min of exercise.  相似文献   

14.
This study was designed to test the hypothesis that cocaine (C) alters the normal physiological responses to exercise. Male rats were injected with saline (S) or C (12.5 mg/kg) either intravenously (iv) or intraperitoneally (ip). After injection the animals were allowed to rest for 30 min or were run on the treadmill (26 m/min, 10% grade). At rest plasma epinephrine values were 245 +/- 24 pg/ml in the S group and 411 +/- 43 (ip) and 612 +/- 41 (iv) pg/ml in the C groups (P less than 0.05 between S and C). During exercise plasma epinephrine levels were 615 +/- 32 pg/ml in S and 1,316 +/- 58 (ip) and 1,208 +/- 37 (iv) pg/ml in the C groups (P less than 0.05 between S and C). Similar results were obtained for norepinephrine. Glycogen content in the white vastus lateralis muscle was reduced to 31 +/- 2 mumol/g in S after exercise, but after C and exercise the values were 12 +/- 4 (ip) and 16 +/- 3 (iv) mumol/g (P less than 0.05 between S and C). There was no effect of the drug on this parameter at rest. Blood lactate rose to 4.8 +/- 1.0 (ip) and 5.8 +/- 1.3 (iv) mM in the C groups but to only 3.0 +/- 0.2 in the S group after exercise (P less than 0.05 between S and C). These results show that C and exercise combined exert a more dramatic effect on plasma catecholamine, muscle glycogen, and blood lactate concentrations than do C and exercise alone. They provide further insight into explaining the adverse effects of C on exercise endurance observed previously (Bracken et al., J. Appl. Physiol. 66: 377-383, 1989).  相似文献   

15.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

16.
17.
The present study was undertaken to determine the effects of endurance training on glycogen kinetics during exercise. A new model describing glycogen kinetics was applied to quantitate the rates of synthesis and degradation of glycogen. Trained and untrained rats were infused with a 25% glucose solution with 6-3H-glucose and U-14C-lactate at 1.5 and 0.5 μCi · min−1 (where 1 Ci = 3.7 × 1010 Bq), respectively, during rest (30 min) and exercise (60 min). Blood samples were taken at 10-min intervals starting just prior to isotopic infusion, until the cessation of exercise. Tissues harvested after the cessation of exercise were muscle (soleus, deep, and superficial vastus lateralis, gastrocnemius), liver, and heart. Tissue glycogen was quantitated and analyzed for incorporation of 3H and 14C via liquid scintillation counting. There were no net decreases in muscle glycogen concentration from trained rats, whereas muscle glycogen concentration decreased to as much as 64% (P < 0.05) in soleus in muscles from untrained rats after exercise. Liver glycogen decreased in both trained (30%) and untrained (40%) rats. Glycogen specific activity increased in all tissues after exercise indicating isotope incorporation and, thus, glycogen synthesis during exercise. There were no differences in muscle glycogen synthesis rates between trained and untrained rats after exercise. However, training decreased muscle glycogen degradation rates in total muscle (i.e., the sum of the degradation rates of all of the muscles sampled) tenfold (P < 0.05). We have applied a model to describe glycogen kinetics in relation to glucose and lactate metabolism during exercise in trained and untrained rats. Training significantly decreases muscle glycogen degradation rates during exercise. Accepted: 22 May 1998  相似文献   

18.
19.
20.
To determine the effects of cocaine on exercise endurance, male rats were injected intraperitoneally with cocaine (20 mg/kg body wt) or saline and then run to exhaustion 20 min later at 22 m/min and 15% grade. Saline-injected animals ran 74.9 +/- 16.5 (SD) min, whereas cocaine-treated rats ran only 29 +/- 11.6 min. The drug had no effect on resting blood glucose or lactate levels, nor did it affect resting glycogen levels in liver or red and white vastus muscle. However, it did reduce resting soleus glycogen content by 30%. During exercise liver and soleus glycogen depletion occurred at the same rate in saline- and cocaine-treated animals. In contrast, the rate of glycogen depletion during exercise in red and white vastus was markedly increased in cocaine-treated rats with a corresponding elevation in blood lactate (12 vs. only 5 mM in saline group) at exhaustion. These data suggest that cocaine administration (20 mg/kg) before submaximal exercise dramatically alters glycogen metabolism during exercise, and this effect has a negative impact on exercise endurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号