首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In vivo, kinase C phosphorylation of the growth-associated protein GAP-43 is spatially and temproally associated with the proximity of growing axons to their targets. Here we have used dissociated dorsal root ganglia (DRG)s and an antibody specific for the phosphorylated form of GAP-43 to demonstrate that neurite regeneration in culture also begins in the absence of detectable levels of phosphorylated GAP-43. Since the β isoform of kinase C was found to be enriched in growth cones before stably phosphorylated GAP-43 was detected, it may normally be inactive during initial neurite outgrowth; however, premature phosphorylation of GAP-43 could be stimulated in newly dissociated DRGs by plating them on cultures in which phosphorylation had already been initiated; media conditioned by such cultures caused no response suggesting an effect of either cell-cell or cell-substrate contact. Increased GAP-43 phosphorylation correlated with a reduced extent of neurite outgrowth but not with the rate at which individual growth cones translocated so that motile growth cones contained very low levels of phosphorylated GAP-43, whereas stationary growth cones showed much more immunoreactivity. Downregulation of kinase C by phorbol ester prevented increased GAP-43 phosphorylation and led to growth cone collapse. Finally, phosphorylated GAP-43 was found to be differently distributed within growth cones. Increased immunoreactivity was frequently observed in the neck of the growth cone and was heterogeneously distributed in lamellae and filopodia. These results, which demonstrate the dynamic regulation of GAP-43 phosphorylation in individual growth cones, are discussed with reference to the association between changes in growth cone shape and the ability to translocate and change direction. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Abstract: Phosphorylation of the nervous system-specific protein GAP-43 in growth cones in vivo increases as the growth cones near their targets, at a time when the gangliosides GM1 and GD1a are being accumulated in the growth cone membrane, thus raising the possibility that the gangliosides could modulate GAP-43 behavior. We used a subcellular fraction of intact isolated growth cones to show that both GM1 and GD1a affected the calcium- dependent posttranslational regulation of GAP-43 in several similar ways. Both gangliosides induced rapid incorporation of phosphate into GAP-43; however, the induction was undetectable with our antibody 2G12 that is specific for kinase C-phosphorylated GAP-43. Furthermore, neither ganglioside stimulated kinase C activity in isolated growth cones, suggesting that the rapid Phosphorylation may not be on Ser41, the kinase C site. However, both gangliosides did induce a slower accumulation of GAP-43 phosphorylated on Ser41, apparently by inhibiting a phosphatase. Finally, calcium-dependent proteolysis of GAP-43 was also stimulated by both GM1 and GD1a. In contrast, GD1a, but not GM1, caused the redistribution of GAP-43 into the isolated growth cone cytoskeleton. The results demonstrate that both gangliosides can modulate the calcium-dependent regulation of GAP-43.  相似文献   

3.
Phosphorylation of GAP-43 (neuromodulin) by protein kinase C (PKC) occurs at a single site, serine41. In vivo, phosphorylation is induced after initiation of axonogenesis and is confined to distal axons and growth cones. Within individual growth cones, phosphorylation is nonuniformly distributed. Here, we have used high-resolution video-enhanced microscopy of cultured dorsal root ganglia neurons together with immunocytochemistry with a monoclonal antibody that recognizes PKC-phosphorylated GAP-43 to correlate the distribution of phosphorylated GAP-43 with growth cone behavior. In “quiescent,” nontranslocating growth cones, phosphorylated GAP-43 was confined to the proximal neurite and the central organelle-rich region, and was low in organelle-poor lamellae. However, levels in lamellae were elevated when they became motile. Conversely, levels of phosphorylated GAP-43 were low in either lamellae that were actively retracting or in the central organelle-rich region and proximal neurite of growth cones that had totally collapsed. The results suggest a mechanism whereby phosphorylation of GAP-43 by PKC, potentially in response to extracellular signals, could direct the functional behavior of the growth cone. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 287–299, 1998  相似文献   

4.

Mammalian axon growth has mechanistic similarities with axon regeneration. The growth cone is an important structure that is involved in both processes, and GAP-43 (growth associated protein-43 kDa) is believed to be the classical molecular marker. Previously, we used growth cone phosphoproteomics to demonstrate that S96 and T172 of GAP-43 in rodents are highly phosphorylated sites that are phosphorylated by c-jun N-terminal protein kinase (JNK). We also revealed that phosphorylated (p)S96 and pT172 antibodies recognize growing axons in the developing brain and regenerating axons in adult peripheral nerves. In rodents, S142 is another putative JNK-dependent phosphorylation site that is modified at a lower frequency than S96 and T172. Here, we characterized this site using a pS142-specific antibody. We confirmed that pS142 was detected by co-expressing mouse GAP-43 and JNK1. pS142 antibody labeled growth cones and growing axons in developing mouse neurons. pS142 was sustained until at least nine weeks after birth in mouse brains. The pS142 antibody could detect regenerating axons following sciatic nerve injury in adult mice. Comparison of amino acid sequences indicated that rodent S142 corresponds to human S151, which is predicted to be a substrate of the MAPK family, which includes JNK. Thus, we confirmed that the pS142 antibody recognized human phospho-GAP-43 using activated JNK1, and also that its immunostaining pattern in neurons differentiated from human induced pluripotent cells was similar to those observed in mice. These results indicate that the S142 residue is phosphorylated by JNK1 and that the pS142 antibody is a new candidate molecular marker for axonal growth in both rodents and human.

  相似文献   

5.
The growth-associated protein GAP-43 is a major protein kinase C substrate of growth cones and developing nerve terminals. In the growth cone, it accumulates near the plasma membrane, where it associates with the cortical cytoskeleton and membranes. The role of GAP-43 in neurite outgrowth is not yet clear, but recent findings suggest that it may be a crucial competence factor in this process. To define the role of GAP- 43 in growth cone activity, we have analyzed neurite outgrowth and growth cone activity in primary sensory neurons depleted of GAP-43 by a specific antisense oligonucleotide procedure. Under optimal culture conditions, but in the absence of GAP-43, growth cones adhered poorly, displayed highly dynamic but unstable lamellar extensions, and were strikingly devoid of local f-actin concentrations. Upon stimulation, they failed to produce NGF-induced spreading or insulin-like growth factor-1-induced branching, whereas growth factor-induced phosphotyrosine immunoreactivity and acceleration of neurite elongation were not impaired. Unlike their GAP-43-expressing counterparts, they readily retracted when exposed to inhibitory central nervous system myelin-derived liposomes. Frequency and extent of induced retraction were attenuated by NGF. Our results indicate that GAP-43 can promote f- actin accumulation, evoked morphogenic activity, and resistance to retraction of the growth cone, suggesting that it may promote regulated neurite outgrowth during development and regeneration.  相似文献   

6.
Hippocampal neurons growing in culture initially extend several, short minor processes that have the potential to become either axons or dendrites. The first expression of polarity occurs when one of these minor processes begins to elongate rapidly, becoming the axon. Before axonal outgrowth, the growth-associated protein GAP-43 is distributed equally among the growth cones of the minor processes; it is preferentially concentrated in the axonal growth cone once polarity has been established (Goslin, K., D. Schreyer, J. Skene, and G. Banker. 1990. J. Neurosci. 10:588-602). To determine when the selective segregation of GAP-43 begins, we followed individual cells by video microscopy, fixed them as soon as the axon could be distinguished, and localized GAP-43 by immunofluorescence microscopy. Individual minor processes acquired axonal growth characteristics within a period of 30-60 min, and GAP-43 became selectively concentrated to the growth cones of these processes with an equally rapid time course. We also examined changes in the distribution of GAP-43 after transection of the axon. After an axonal transection that is distant from the soma, neuronal polarity is maintained, and the original axon begins to regrow almost immediately. In such cases, GAP-43 became selectively concentrated in the new axonal growth cone within 12-30 min. In contrast, when the axon is transected close to the soma, polarity is lost; the original axon rarely regrows, and there is a significant delay before a new axon emerges. Under these circumstances, GAP-43 accumulated in the new growth cone much more slowly, suggesting that its ongoing selective routing to the axon had been disrupted by the transection. These results demonstrate that the selective segregation of GAP-43 to the growth cone of a single process is closely correlated with the acquisition of axonal growth characteristics and, hence, with the expression of polarity.  相似文献   

7.
GAP-43 regulates NCAM-180-mediated neurite outgrowth   总被引:6,自引:0,他引:6  
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.  相似文献   

8.
In neurons, the position of the centrosome during final mitosis marks the point of emergence of the future axon. However, the molecular underpinnings linking centrosome position to axon emergence are unknown. GAP-43 is a calmodulin-binding IQ motif protein that regulates neuronal cytoskeletal architecture by interacting with F-actin in a phosphorylation dependent manner. Here we show that GAP-43 is associated with the centrosome and plays a critical role in mitosis and acquisition of neuronal polarity in cerebellar granule neurons. In the absence of GAP-43, the centrosome position is delinked from process outgrowth and is only capable of mediating morphological polarization, however molecular specification of the axonal compartment does not take place. These results show that GAP-43 is required to link centrosome position to process outgrowth in order to generate neuronal polarity in cerebellar granule cells.  相似文献   

9.
Abstract: The neuronal protein GAP-43 is concentrated at the growth cone membrane, where it is thought to amplify the signal transduction process. As a model for its neuronal effects, GAP-43 protein injection into Xenopus laevis oocytes strongly augments the calcium-sensitive chloride current evoked by the G protein-coupled receptor stimulation. We have now examined a series of GAP-43 mutants in this system and determined those regions of GAP-43 required for this increase in current flux. As expected, palmitoylation inhibits signal amplification in oocytes by blocking G protein activation. Unexpectedly, a second domain of GAP-43 (residues 35–50) containing a protein kinase C phosphorylation site at residue 41 is also necessary for augmentation of G protein-coupled signals in oocytes. This region is not required for activation of isolated Go but is necessary for GAP-43 binding to isolated calmodulin and to isolated protein kinase C. Substitution of Asp for Ser41 inactivates GAP-43 as a signal facilitator in oocytes. This mutation blocks GAP-43 binding to both protein kinase C and calmodulin. Thus, GAP-43 regulates an oocyte signaling cascade via coordinated, simultaneous G protein activation and interaction with either calmodulin or protein kinase C.  相似文献   

10.
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation.  相似文献   

11.
The receptor Deleted in Colorectal Cancer (DCC) mediates the attractive response of axons to the guidance cue netrin-1 during development. On netrin-1 stimulation, DCC is phosphorylated and induces the assembly of signaling complexes within the growth cone, leading to activation of cytoskeleton regulators, namely the GTPases Rac1 and Cdc42. The molecular mechanisms that link netrin-1/DCC to the actin machinery remain unclear. In this study we seek to demonstrate that the actin-binding proteins ezrin-radixin-moesin (ERM) are effectors of netrin-1/DCC signaling in embryonic cortical neurons. We show that ezrin associates with DCC in a netrin-1-dependent manner. We demonstrate that netrin-1/DCC induces ERM phosphorylation and activation and that the phosphorylation of DCC is required in that context. Moreover, Src kinases and RhoA/Rho kinase activities mediate netrin-1-induced ERM phosphorylation in neurons. We also observed that phosphorylated ERM proteins accumulate in growth cone filopodia, where they colocalize with DCC upon netrin-1 stimulation. Finally, we show that loss of ezrin expression in cortical neurons significantly decreases axon outgrowth induced by netrin-1. Together, our findings demonstrate that netrin-1 induces the formation of an activated ERM/DCC complex in growth cone filopodia, which is required for netrin-1-dependent cortical axon outgrowth.  相似文献   

12.
The similarity between the calcium-activated signaling systems of oocytes and neuronal axon terminals has prompted us to test whether BASP1 and GAP-43 proteins, highly expressed in brain neurons, are present in oocytes. Using immunocytochemical techniques combined with confocal microscopy, we have for the first time demonstrated that both BASP1 and GAP-43 are present in mouse metaphase II (MII) oocytes and zygotes. BASP1 is localized to the plasma membrane and actin cortex of MII oocytes, which is similar to BASP1 distribution in neurons and other cell types. GAP-43 is generally regarded as a postmitotic membrane marker of nerve cells; however, GAP-43 in MII oocytes is associated with microtubules of the meiotic spindle. GAP-43 is also colocalized with γ-tubulin at the spindle poles (centrosomes) and at the discrete microtubule- organizing centers in the cytoplasm. The antibodies to Ser41-phosphorylated form of GAP-43 allowed for demonstration that GAP-43 in oocytes is subject to phosphorylation by protein kinase C. The presence of BASP1 and GAP-43 in oocytes is also confirmed by electrophoresis and western blotting. Microinjection of BASP1 (but not GAP-43) into the cytoplasm of mouse MII oocytes induces their exit from metaphase II arrest followed by parthenogenetic embryo development. This suggests putative BASP1 involvement in fertilization-induced oocyte activation, presumably, through regulation of local concentration of polyphosphoinositides in the plasma membrane. Recently it was found that GAP-43 is associated with centrosomes in asymmetrically dividing neuronal progenitors, which is similar to the localization of GAP-43 at the meiotic spindle and centrosomes in oocytes. Therefore we suggest that GAP-43 may be involved in regulation of spindle orientation and oocyte polarity.  相似文献   

13.
GAP-43 is a neuronal calmodulin-binding phosphoprotein that is concentrated in growth cones and presynaptic terminals. By sequencing tryptic and endoproteinase Asp-N phosphopeptides and directly determining the release of radioactive phosphate, we have identified three sites (serines 41 and 96 and threonine 172) that are phosphorylated, both in cultured neurons and in neonatal rat brain. These three sites account for most of the 32PO4 that was incorporated into GAP-43 in cultured neurons; 8-15% of each site was occupied with phosphate in GAP-43 isolated from neonatal rat brain. Phosphorylation of serine 41 in cultured neurons was stimulated by phorbol ester, indicating that it is the only site phosphorylated by protein kinase C. The resemblance of the sequence surrounding the other two sites suggests that they may be substrates for the same protein kinase. None of the sites phosphorylated by casein kinase II in vitro was phosphorylated in living cells or in neonatal rat brain. These results show that GAP-43 is a substrate for at least one protein kinase in addition to protein kinase C in living cells and brain.  相似文献   

14.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway.  相似文献   

15.
Identification of the protein kinase C phosphorylation site in neuromodulin   总被引:11,自引:0,他引:11  
E D Apel  M F Byford  D Au  K A Walsh  D R Storm 《Biochemistry》1990,29(9):2330-2335
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin [Alexander, K. A., Cimler, B. M., Meier, K. E., & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113], and we have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar Km values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [gamma-32P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32P-labeled tryptic peptide was generated from phosphorylated neuromodulin. The sequence of this peptide was IQASFR. The serine in this peptide corresponds to position 41 of the entire protein, which is adjacent to or contained within the calmodulin binding domain of neuromodulin. A synthetic peptide, QASFRGHITRKKLKGEK, corresponding to the calmodulin binding domain with a few flanking residues, including serine-41, was also phosphorylated by protein kinase C. We conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmodulin to neuromodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The present study examined the role of phospholipase D2 (PLD2) in the regulation of depolarization-induced neurite outgrowth and the expression of growth-associated protein-43 (GAP-43) and synapsin I in rat pheochromocytoma (PC12) cells. Depolarization of PC12 cells with 50 mmol/L KCl increased neurite outgrowth and elevated mRNA and protein expression of GAP-43 and synapsin I. These increases were suppressed by inhibition of Ca2+-calmodulin-dependent protein kinase II (CaMKII), PLD, or mitogen-activated protein kinase kinase (MEK). Knockdown of PLD2 by small interfering RNA (siRNA) suppressed the depolarization-induced neurite outgrowth, and the increase in GAP-43 and synapsin I expression. Depolarization evoked a Ca2+ rise that activated various signaling enzymes and the cAMP response element-binding protein (CREB). Silencing CaMKIIδ by siRNA blocked KCl-induced phosphorylation of proline-rich protein tyrosine kinase 2 (Pyk2), Src kinase, and extracellular signal-regulated kinase (ERK). Inhibition of Src or MEK abolished phosphorylation of ERK and CREB. Furthermore, phosphorylation of Pyk2, ERK, and CREB was suppressed by the PLD inhibitor, 1-butanol and transfection of PLD2 siRNA, whereas it was enhanced by over-expression of wild-type PLD2. Depolarization-induced PLD2 activation was suppressed by CaMKII and Src inhibitors, but not by MEK or protein kinase A inhibitors. These results suggest that the signaling pathway of depolarization-induced PLD2 activation was downstream of CaMKIIδ and Src, and upstream of Pyk2(Y881) and ERK/CREB, but independent of the protein kinase A. This is the first demonstration that PLD2 activation is involved in GAP-43 and synapsin I expression during depolarization-induced neuronal differentiation in PC12 cells.  相似文献   

17.
Growth cones, the motile apparatus at the ends of elongating axons, are sites of extensive and dynamic membrane-cytoskeletal interaction and insertion of new membrane into the growing axon. One of the most abundant proteins in growth cone membranes is a protein designated GAP-43, whose synthesis increases dramatically in most neurons during periods of axon development or regeneration. We have begun to explore the role of GAP-43 in growth cone membrane functions by asking how the protein interacts with those membranes. Membrane-washing experiments indicate that mature GAP-43 is tightly bound to growth cone membranes, and partitioning of Triton X-114-solubilized GAP-43 between detergent-enriched and detergent-depleted phases indicates considerable hydrophobicity. The hydrophobic behavior of the protein is modulated by divalent cations, particularly zinc and calcium. In vivo labeling of GAP-43 in neonatal rat brain with [35S]methionine shows that GAP-43 is initially synthesized as a soluble protein that becomes attached to membranes posttranslationally. In tissue culture, both rat cerebral cortex cells and neuron-like PC12 cells actively incorporate [3H]palmitic acid into GAP-43. Isolated growth cones detached from their cell bodies also incorporate labeled fatty acid into GAP-43, suggesting active turnover of the fatty acid moieties on the mature protein. Hydrolysis of ester-like bonds with neutral hydroxylamine removes the bound fatty acid and exposes new thiol groups on GAP-43, suggesting that fatty acid is attached to the protein's only two cysteine residues, located in a short hydrophobic domain at the amino terminus. Modulation of the protein's hydrophobic behavior by divalent cations suggests that other domains, containing large numbers of negatively charged residues, might also contribute to GAP-43-membrane interactions. Our observations suggest a dynamic and reversible interaction of GAP-43 with growth cone membranes.  相似文献   

18.
GAP-43 is an abundant intracellular growth cone protein that can serve as a PKC substrate and regulate calmodulin availability. In mice with targeted disruption of the GAP-43 gene, retinal ganglion cell (RGC) axons fail to progress normally from the optic chiasm into the optic tracts. The underlying cause is unknown but, in principle, can result from either the disruption of guidance mechanisms that mediate axon exit from the midline chiasm region or defects in growth cone signaling required for entry into the lateral diencephalic wall to form the optic tracts. Results here show that, compared to wild-type RGC axons, GAP-43-deficient axons exhibit reduced growth in the presence of lateral diencephalon cell membranes. Reduced growth is not observed when GAP-43-deficient axons are cultured with optic chiasm, cortical, or dorsal midbrain cells. Lateral diencephalon cell conditioned medium inhibits growth of both wild-type and GAP-43-deficient axons to a similar extent and does not affect GAP-43-deficient axons more so. Removal or transplant replacement of the lateral diencephalon optic tract entry zone in GAP-43-deficient embryo preparations results in robust RGC axon exit from the chiasm. Together these data show that RGC axon exit from the midline region does not require GAP-43 function. Instead, GAP-43 appears to mediate RGC axon interaction with guidance cues in the lateral diencephalic wall, suggesting possible involvement of PKC and calmodulin signaling during optic tract formation.  相似文献   

19.
Selective conservation of GAP-43 structure in vertebrate evolution   总被引:7,自引:0,他引:7  
M E LaBate  J H Skene 《Neuron》1989,3(3):299-310
GAP-43 (a.k.a. B-50, F1, pp46, or neuromodulin) is a major growth cone membrane protein whose expression is widely correlated with successful axon elongation, but whose function remains unknown. To distinguish the structural features of GAP-43 most relevant to its cellular functions, we have determined features of the protein that are most highly conserved in vertebrate evolution. Comparison of fish and mammalian GAP-43 distinguishes two domains of the protein. A strictly conserved amino-terminal domain contains the putative site for fatty acylation and membrane attachment, a calmodulin binding domain, and a proposed phosphorylation site. In the much larger carboxy-terminal domain, amino acid composition is strongly conserved without extensive sequence conservation. This amino acid composition predicts an extended, negatively charged rod conformation with some similarity to the side arms of neurofilaments. The results suggest that the biological roles of GAP-43 may depend on an ability to form a dynamic membrane-cytoskeleton-calmodulin complex.  相似文献   

20.
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin-binding protein believed to play a role in regulation of neurite outgrowth and neuroplasticity. Neuromodulin is phosphorylated by protein kinase C, and this phosphorylation prevents calmodulin from binding to neuromodulin (Alexander, K. A., Cimler, B. M., Meier, K. E. & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). The only other protein kinase known to phosphorylate neuromodulin is casein kinase II (Pisano, M. R., Hegazy, M. G., Reimann, E. M. & Dokas, L. A. (1988) Biochem. Biophys. Res. Commun. 155, 1207-1212). Phosphoamino acid analyses revealed that casein kinase II modified serine and threonine residues in both native bovine and recombinant mouse neuromodulin. Two serines located in the C-terminal end of neuromodulin, Ser-192 and Ser-193, were identified as the major casein kinase II phosphorylation sites. Thr-88, Thr-89, or Thr-95 were identified as minor casein kinase II phosphorylation sites. Phosphorylation by casein kinase II did not affect the ability of neuromodulin to bind to calmodulin-Sepharose. However, calmodulin did inhibit the phosphorylation of neuromodulin by casein kinase II with a Ki of 1-2 microM. Calmodulin inhibition of casein kinase II phosphorylation was due to calmodulin binding to neuromodulin rather than to the protein kinase. These data suggest that the minimal secondary and tertiary structure exhibited by neuromodulin may be sufficient to juxtapose its calmodulin-binding domain, located at the N-terminal end, with the neuromodulin casein kinase II phosphorylation sites at the C-terminal end of the protein. We propose that calmodulin regulates casein kinase II phosphorylation of neuromodulin by binding to neuromodulin and sterically hindering the interaction of casein kinase II with its phosphorylation sites on neuromodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号