首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Gergely  C Ganea    G Váró 《Biophysical journal》1994,67(2):855-861
The photocycle of the 13-cis retinal containing bacteriorhodopsin was studied by three different techniques. The optical multichannel analyzer monitored the spectral changes during the photocycle and gave information about the number and the spectrum of the intermediates. The absorption kinetic measurements provided the possibility of following the absorbance changes at several characteristic wavelengths. The electric signal provided information about the charge motions during the photocycle. The results reveal the existence of two intermediates in the 13-cis photocycle, one with a short lifetime having an average of 1.7 microseconds and an absorption maximum at 620 nm. The other, a long-living intermediate, has a lifetime of about 50 ms and an absorption maximum around 585 nm. The data analysis suggests that these intermediates are in two parallel branches of the photocycle, and branching from the intermediate with the shorter lifetime might be responsible for the light-adaptation process.  相似文献   

2.
《FEBS letters》1986,209(2):316-320
A novel intermediate (P) of the bacteriorhodopsin (bR) photocycle, appearing between M412 and bR is described. Like bR, intermediate P shows an absorption maximum at 560–570 nm. However, the extinction coefficient of P is somewhat lower than that of bR. Moreover, there are some differences in spectra of bR and P at wavelengths shorter than 450 nm. The P → bR transition correlates with the absorption of H+ from the water medium. The following conditions proved to be favourable for the detection of the new intermediate: a high salt concentration, low light intensity and low temperature (0.5°C). The P → bR transition is strongly decelerated by a small amount of Triton X-100. Illumination of P does not produce M412 before bR is formed. It is assumed that M412 converts to P when the Schiff base is protonated by a proton transferred from a protein protolytic group which participates in the inward H+-conductivity pathway. Reprotonation of this group results in the conversion of P to bR. No more than 1 H+ is transported per bR photocycle.  相似文献   

3.
J Krupinski  G G Hammes 《Biochemistry》1985,24(24):6963-6972
A rapid reconstitution procedure has been developed to insert deoxycholate-purified bacteriorhodopsin (bR) into asolectin vesicles. The procedure relies on the ability of the hydrophobic resin Bio-Beads SM-2 to remove octyl glucoside from a mixture of deoxycholate-purified bR, asolectin, and the detergent. Light-dependent acidification of the vesicle interior is observed with the reconstituted preparations as judged by the fluorescence quenching of an entrapped pH indicator, pyranine. Inhibition of proton pumping by the addition of LaCl3 to the external medium indicates that approximately 90% of the bR is oriented such that it pumps protons into the vesicles. Phase-lifetime spectrophotometry was used to study the relaxation processes associated with the intermediate in the photocycle of the reconstituted bR which absorbs at 410 nm. Amplitude spectra indicate that these absorbance changes are associated with the M intermediate in the bR photocycle. Two relaxation processes are observed. One is characterized by a relaxation time of approximately 4 ms and is independent of pH over the range 4.4-9.4. The longer relaxation time varies from 4 to 200 ms in the same pH range. By digitization of transients, which are observable when the actinic source is modulated at a low frequency, information about the dependence of the slower process on the light intensity and carbonyl cyanide m-chlorophenylhydrazone was obtained. The results can be interpreted in terms of two different forms of the M intermediate that decay on parallel kinetic paths. To explain the pH dependence of the decay rate, the slower decaying form must have three coupled protonation states, each with a different decay rate.  相似文献   

4.
P Ormos  K Chu  J Mourant 《Biochemistry》1992,31(30):6933-6937
Infrared spectroscopy is used to characterize the transitions in the photocycle of bR involving the M intermediate. It has been shown previously that in this part of the photocycle a large protein conformational change takes place that is important for proton pumping. In this work we separate the spectra of the L, M, and N intermediates in order to better describe the timing of the molecular changes. We use the photoreaction of the M intermediate to separate its spectrum from those of L and N. At temperatures between 220 and 270 K a mixture of M and L or N is produced by illumination with green light. Subsequent blue illumination selectively drives M back into the ground state and the difference between the spectra before and after blue excitation yields the spectrum of M. Below about 250 K and L/M mixture is separated; at higher temperatures an M/N mixture is seen. We find that the spectrum of M is identical in the two temperature regions. The large protein conformational change is seen to occur during the M to N transition. Our results confirm that Asp-96 is transiently deprotonated in the L state. The only aspartic protonation changes between M and bR are the protonation of Asp-85 and Asp-212 that occur simultaneously during the L to M transition. Blue-light excitation of M results in deprotonation of both. The results suggest a quadrupolelike interaction of the Schiff base, Asp-85, Asp-212, and an additional positive charge in bR.  相似文献   

5.
Halobacterium halobium Flx mutants are deficient in bacteriorhodopsin (bR) and halorhodopsin (hR). Such strains are phototactic and the light signal detectors are two additional retinal pigments, sensory rhodopsins I and II (sR-I and sR-II), which absorb maximally at 587 and 480 nm, respectively. A retinal-deficient Flx mutant, Flx5R, overproduces sR-I-opsin and does not show any photochemical activity other than that of sR-I after the pigment is regenerated by addition of all-trans retinal. Using native membrane vesicles from this strain, we have resolved a new photointermediate in the sR-I photocycle between the early bathointermediate S610 and the later intermediate S373. The new form, S560, resembles the L intermediate of bR in its position in the photoreaction cycle, its relatively low extinction, and its moderate blue shift. It forms with a half-time of approximately 90 microseconds at 21 degrees C, concomitant with the decay of S610. Its decay with a half-time of 270 microseconds parallels the appearance of S373. From a data set consisting of laser flash-induced absorbance changes (300 ns, 580-nm excitation) measured at 24 wavelengths from 340 to 720 nm in a time window spanning 1 microsecond to 8 s we have calculated the spectra of the photocycle intermediates assuming a unidirectional, unbranched reaction scheme.  相似文献   

6.
A series of organized (PDAC/PM)(n) (poly(diallyldimethylammonium chloride)/purple membrane) multilayer films were prepared by alternate adsorptions of positively charged PDAC polyelectrolyte and negatively charged purple membrane (PM). The kinetics of the photocycle of bacteriorhodopsin (bR) in PM was studied by flash photolysis and transient photovoltage methods. Although the orientation of the adsorbed bR depends on the pH of the PM suspension, the kinetics of the photo-induced reaction cycle in dehydrated films is independent of the deposition pH. In dry (PDAC/PM)(n) films the decay of the M intermediate to the initial bR state is multiexponential and delayed to several minutes for both orientations. A simultaneous two-exponential decay in millisecond time domain was observed at red wavelengths. The source of the red-shifted absorption is suggested to be the C(610) intermediate of the cis photocycle of bR.  相似文献   

7.
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.  相似文献   

8.
Hutson MS  Alexiev U  Shilov SV  Wise KJ  Braiman MS 《Biochemistry》2000,39(43):13189-13200
Arginine-82 (R82) of bacteriorhodopsin (bR) has long been recognized as an important residue due to its absolute conservation in the archaeal rhodopsins and the effects of R82 mutations on the photocycle and proton release. However, the nature of interactions between R82 and other residues of the protein has remained difficult to decipher. Recent NMR studies showed that the two terminal nitrogens of R82 experience a highly perturbed asymmetric environment during the M state trapped at cryogenic temperatures [Petkova et al. (1999) Biochemistry 38, 1562-1572]. Although previous low-temperature FT-IR spectra of wild-type and mutant bR samples have demonstrated effects of R82 on vibrations of other amino acid side chains, no bands in these spectra were assignable to vibrations of R82 itself. We have now measured time-resolved FT-IR difference spectra of bR intermediates in the wild-type and R82A proteins, as well as in samples of the R82C mutant with and without thioethylguanidinium attached via a disulfide linkage at the unique cysteine site. Several bands in the bR --> M difference spectrum are attributable to guanidino group vibrations of R82, based on their shift upon isotope substitution of the thioethylguanidinium attached to R82C and on their disappearance in the R82A spectrum. The frequencies and intensities of these IR bands support the NMR-based conclusion that there is a significant perturbation of R82 during the bR photocycle. However, the unusually low frequencies attributable to R82 guandino group vibrations in M, approximately 1640 and approximately 1545 cm(-)(1), would require a reexamination of a previously discarded hypothesis, namely, that the perturbation of R82 involves a change in its ionization state.  相似文献   

9.
Testing BR photocycle kinetics.   总被引:4,自引:1,他引:3  
J F Nagle  L Zimanyi    J K Lanyi 《Biophysical journal》1995,68(4):1490-1499
An improved K absorption spectrum in the visible is obtained from previous photocycle data for the D96N mutant of bacteriorhodopsin, and the previously obtained M absorption spectrum in the visible and the fraction cycling are confirmed at 25 degrees C. Data at lower temperatures are consistent with negligible temperature dependence in the spectra from 5 degrees C to 25 degrees C. Detailed analysis strongly indicates that there are two intermediates in addition to the first intermediate K and the last intermediate M. Assuming two of the intermediates have the same spectrum and using the L spectrum obtained previously, the best kinetic model with four intermediates that fits the time course of the intermediates is rather unusual, with two L's on a cul-de-sac. However, a previously proposed, more conventional model with five intermediates, including two L's with the same spectra and two M's with the same spectra, also fits the time course of the intermediates nearly as well. A new criterion that tests an individual proposed spectrum against data is also proposed.  相似文献   

10.
At high pH (> 8) the 570 nm absorption band of all-trans bacteriorhodopsin (bR) in purple membrane undergoes a small (1.5 nm) shift to longer wavelengths, which causes a maximal increase in absorption at 615 nm. The pK of the shift is 9.0 in the presence of 167 mM KCl, and its intrinsic pK is ~8.3. The red shift of the trans-bR absorption spectrum correlates with the appearance of the fast component in the light-induced L to M transition, and absorption increases at 238 and 297 nm which are apparently caused by the deprotonation of a tyrosine residue and red shift of the absorption of tryptophan residues. This suggests that the deprotonation of a tyrosine residue with an exceptionally low pK (pKa ≈ 8.3) is responsible for the absorption shift of the chromophore band and fast M formation. The pH and salt dependent equilibrium between the two forms of bR, “neutral” and “alkaline,” bR ↔ bRa, results in two parallel photocycles of trans-bR at high pH, differing in the rate of the L to M transition. In the pH range 10-11.8 deprotonation of two more tyrosine residues is observed with pK's ~ 10.3 and 11.3 (in 167 mM KCL). Two simple models discussing the role of the pH induced tyrosine deprotonation in the photocycle and proton pumping are presented.

It is suggested that the shifts of the absorption bands at high pH are due to the appearance of a negatively charged group inside the protein (tyrosinate) which causes electrochromic shifts of the chromophore and protein absorption bands due to the interaction with the dipole moments in the ground and excited states of bR (Stark effect). This effect gives evidence for a significant change in the dipole moment of the chromophore of bR upon excitation.

Under illumination alkaline bR forms, besides the usual photocycle intermediates, a long-lived species with absorption maximum at 500 nm (P500). P500 slowly converts into bRa in the dark. Upon illumination P500 is transformed into an intermediate having an absorption maximum at 380 nm (P380). P380 can be reconverted to P500 by blue light illumination or by incubation in the dark.

  相似文献   

11.
We present time-resolved room-temperature infrared difference spectra for the bacteriorhodopsin (bR) photocycle at 8 cm (-1) spectral and 5 micros temporal resolution, from 4000 to 800 cm (-1). An in situ hydration method allowed for a controlled and stable sample hydration (92% relative humidity), largely improving the quality of the data without affecting the functionality of bR. Experiments in both H 2 (16)O and H 2 (18)O were conducted to assign bands to internal water molecules. Room-temperature difference spectra of the L and M intermediates minus the bR ground state (L-BR and M-BR, respectively) were comprehensively compared with their low-temperature counterparts. The room-temperature M-BR spectrum was almost identical to that obtained at 230 K, except for a continuum band. The continuum band contains water vibrations from this spectral comparison between H 2 (16)O and H 2 (18)O, and no continuum band at 230 K suggests that the protein/solvent dynamics are insufficient for deprotonation of the water cluster. On the other hand, an intense positive broadband in the low-temperature L-BR spectrum (170 K) assigned to the formation of a water cavity in the cytoplasmic domain is absent at room temperature. This water cavity, proposed to be an essential feature for the formation of L, seems now to be a low-temperature artifact caused by restricted protein dynamics at 170 K. The observed differences between low- and room-temperature FTIR spectra are further discussed in light of previously reported dynamic transitions in bR. Finally, we show that the kinetics of the transient heat relaxation of bR after photoexcitation proceeds as a thermal diffusion process, uncorrelated with the photocycle itself.  相似文献   

12.
Quantum efficiencies of bacteriorhodopsin photochemical reactions.   总被引:1,自引:1,他引:0  
A H Xie 《Biophysical journal》1990,58(5):1127-1132
Determination of quantum efficiencies of bacteriorhodopsin (bR) photoreactions is an essential step toward a full understanding of its light-driven proton-pumping mechanism. The bR molecules can be photoconverted into and from a K state, which is stable at 110 K. I measured the absorption spectra of pure bR, and the photoequilibrium states of bR and K generated with 420, 460, 500, 510, 520, 540, 560, 570, 580, 590, and 600 nm illumination at 110 K. The fraction of the K population in the photoequilibrium state, fk, is determined by AbR and AK the absorbances of the bR and K states at the excitation wavelengths, and also by phi 1 and phi 2, the quantum efficiencies for the bR to K and K to bR photoconversion: fK = phi 1 AbR/(phi 1AbR + phi 2Ak). By assuming that the ratio phi 1/phi 2 is the same at two different but close wavelengths, for example 570 and 580 nm, the value of phi 1/phi 2 at 570 and 580 nm was determined to be 0.55 +/- 0.02, and the spectrum of the K state was obtained with the peak absorbance at 607 nm. The values of phi 1/phi 2 at the other excitation wavelengths were then evaluated using the known K spectrum, and show almost no dependence on the excitation wavelength within the main band. The result phi 1/phi 2 = 0.55 +/- 0.02 disagrees with those of many other groups. The advantages of this method over others are its minimal assumptions and its straightforward procedure.  相似文献   

13.
Xiao Y  Hutson MS  Belenky M  Herzfeld J  Braiman MS 《Biochemistry》2004,43(40):12809-12818
Arginine-82 has long been recognized as an important residue in bacteriorhodopsin (bR), because its mutation usually results in loss of fast H(+) release, an important step in the normal light-induced H(+) transport mechanism. To help to clarify the structural changes in Arg-82 associated with the H(+)-release step, we have measured time-resolved FT-IR difference spectra of wild-type bR containing either natural-abundance isotopes ((14)N-Arg-bR) or all seven arginines selectively and uniformly labeled with (15)N at the two eta-nitrogens ((15)N-Arg-bR). Comparison of the spectra from the two isotopic variants shows that a 1556 cm(-1) vibrational difference band due to the M photocycle intermediate of (14)N-Arg-bR loses substantial intensity in (15)N-Arg-bR. However, this isotope-sensitive arginine vibrational difference band is only observed at pH 7 and not at pH 4 where fast H(+) release is blocked. These observations support the earlier conclusion, based on site-directed mutagenesis and chemical labeling, that a strong C-N stretch vibration of Arg-82 can be assigned to a highly perturbed frequency near 1555 cm(-1) in the M state of wild-type bR [Hutson et al. (2000) Biochemistry 39, 13189-13200]. Furthermore, alkylguanidine model compound spectra indicate that the unusually low arginine C-N stretch frequency in the M state is consistent with a nearly stoichiometric light-induced deprotonation of an arginine side chain within bR, presumably arginine-82.  相似文献   

14.
G Váró  J K Lanyi 《Biochemistry》1990,29(9):2241-2250
The photocycle of bacteriorhodopsin (BR) was studied at alkaline pH with a gated multichannel analyzer, in order to understand the origins of kinetic complexities in the rise and decay of the M intermediate. The results indicate that the biphasic rise and decay kinetics are unrelated to a photoreaction of the N intermediate of the BR photocycle, proposed earlier by others [Kouyama et al. (1988) Biochemistry 27, 5855-5863]. Rather, under conditions where N did not accumulate in appreciable amounts (high pH, low salt concentration), they were accounted for by conventional kinetic schemes. These contained reversible interconversions, either M in equilibrium with N in one of two parallel photocycles or L in equilibrium with as well as M in equilibrium with N in a single photocycle. Monomeric BR also showed these kinetic complications. Conditions were then created where N accumulated in a photo steady state (high pH, high salt concentration, background illumination). The apparent increase in the proportion of the slow M decay component by the background illumination could be quantitatively accounted for with the single photocycle model, by the mixing of the relaxation of the background light induced photo steady state with the inherent kinetics of the photocycle. Postulating a new M intermediate which is produced by the photoreaction of N was neither necessary nor warranted by the data. The difference spectra suggested instead that absorption of light by N generates only one intermediate, observable between 100 ns and 1 ms, which absorbs near 610 nm. Thus, the photoreaction of N resembles in some respects that of BR containing 13-cis-retinal.  相似文献   

15.
H Garty  S R Caplan    D Cahen 《Biophysical journal》1982,37(2):405-415
Enthalpy changes associated with intermediates of the photocycle of bacteriorhodopsin (bR) in light-adapted Halobacterium halobium purple membranes, and decay times of these intermediates, are obtained from photoacoustic measurements on purple membrane fragments. Our results, mainly derived from modulation frequency spectra, show changes in the amount of energy stored in the intermediates and in their decay times as a function of pH and/or salt concentration. Especially affected are the slowest step (endothermic) and a spectroscopically unidentified intermediate (both at pH 7). This effect is interpreted in terms of cation binding to the protein, conformational changes of which are thought to be connected with the endothermic process. Wavelength spectra are used to obtain heat dissipation spectra, which allow identification of wavelength regions with varying photoactivity, and estimation of the amounts of enthalpy stored in the photointermediates. Because of bleaching and accumulation of intermediates, however, and because of the small fraction of light energy stored during photocycle, quantitative information cannot be obtained. From photoacoustic wavelength spectra of purple membrane fragments equilibrated at 63% relative humidity, rise and decay times of the bR570 and M412 intermediates are calculated.  相似文献   

16.
The first step of the bacteriorhodopsin (bR) photocycle involves the formation of a red-shifted product, K. Fourier transform infrared difference spectra of the bR570 to K630 transition at 81 K has been measured for bR containing different isotopic substitutions at the retinal Schiff base. In the case of bacteriorhodopsin containing a deuterium substitution at the Schiff base nitrogen, carbon 15, or both, we find spectral changes in the 1600-1610- and 1570-1580-cm-1 region consistent with the hypothesis that the K630 C=N stretching mode of a protonated Schiff base is located near 1609 cm-1. A similar set of Schiff base deuterium substitutions for retinal containing a 13C at the carbon 10 position strongly supports this conclusion. This assignment of the K630 C=N stretching vibration provides evidence that the bR Schiff base proton undergoes a substantial environmental change most likely due to separation from a counterion. In addition, a correlation is found between the C=N stretching frequency and the maximum wavelength of visible absorption, suggesting that movement of a counterion relative to the Schiff base proton is the main source of absorption changes in the early stages of the photocycle. Such a movement is a key prediction of several models of proton transport and energy transduction. Evidence is also presented that one or more COOH groups are involved in the formation of the K intermediate.  相似文献   

17.
Fourier transform infrared study of the halorhodopsin chloride pump   总被引:2,自引:0,他引:2  
Halorhodopsin (hR) is a light-driven chloride pump located in the cell membrane of Halobacterium halobium. Fourier transform infrared difference spectroscopy has been used to study structural alterations occurring during the hR photocycle. The frequencies of peaks attributed to the retinylidene chromophore are similar to those observed in the spectra of the related protein bacteriorhodopsin (bR), indicating that in hR as in bR an all-trans----13-cis isomerization occurs during formation of the early bathoproduct. Spectral features due to protein structural alterations are also similar for the bR and hR photocycles. For example, formation of the red-shifted primary photoproducts of both hR and bR results in similar carboxyl peaks in the 1730-1745-cm-1 region. However, in contrast to bR, no further changes are observed in the carboxyl region during subsequent steps in the hR photocycle, indicating that additional carboxyl groups are not directly involved in chloride translocation. Overall, the close similarity of vibrations in hR and bR photoproduct difference spectra supports the existence of some common elements in the molecular mechanisms of energy transduction and active transport by these two proteins.  相似文献   

18.
Both the solution and the oriented film absorption and circular dichroic spectra of the bacteriorhodopsin (bR568) and M412 intermediate of the purple membrane photocycle were compared over the wavelength region 800-183 nm to assess structural changes during this photocycle. The main findings are (a) loss of the excitonic interaction among the chromophoric retinal transitions indicating disordering of the retinal orientations in the membrane and distortions of the membrane hexagonal crystal lattice, (b) structural change of the chromophoric retinal, (c) changes in the key interactions between the retinal and specific groups in the local environment of the apoprotein, (d) significant changes of the tertiary structure of the bR with negligible secondary structure involvement, and (e) a net tilting of the rodlike segments of the bR polypeptides away from the membrane normal. These findings are in accord with large scale global structural changes of the membrane during the photocycle and with structural metastability of the bR molecules. An important implication of these changes is the possibility of transmembrane retinal-regulated pulsating channels during the photocycle. The significance of this possibility in respect to models for the proton translocation function of this membrane is discussed.  相似文献   

19.
Nakao M  Maki K  Arai M  Koshiba T  Nitta K  Kuwajima K 《Biochemistry》2005,44(17):6685-6692
The intermediate in the equilibrium unfolding of canine milk lysozyme induced by a denaturant is known to be very stable with characteristics of the molten globule state. Furthermore, there are at least two kinetic intermediates during refolding of this protein: a burst-phase (first) intermediate formed within the dead time of stopped-flow measurements and a second intermediate that accumulates with a rate constant of 22 s(-)(1). To clarify the relationships of these intermediates with the equilibrium intermediate, and also to characterize the structural changes of the protein during refolding, here we studied the kinetic refolding reactions using stopped-flow circular dichroism at 10 different wavelengths and obtained the circular dichroism spectra of the intermediates. Comparison of the circular dichroism spectra of the intermediates, as well as the absence of observed kinetics in the refolding from the fully unfolded state to the equilibrium intermediate, has demonstrated that the burst-phase intermediate is equivalent to the equilibrium intermediate. The difference circular dichroism spectrum that represented changes from the kinetic intermediate to the native state had characteristics of an exciton coupling band, indicating that specific packing of tryptophan residues in this protein occurred in this phase. From these findings, we propose a schematic model of the refolding of canine milk lysozyme that is consistent with the hierarchical mechanism of protein folding.  相似文献   

20.
In the photocycle of bacteriorhodopsin (bR) from Halobacterium salinarum mutant L93A, the O-intermediate accumulates and the cycling time is increased approximately 200 times. Nevertheless, under continuous illumination, the protein pumps protons at near wild-type rates. We excited the mutant L93A in purple membrane with single or triple laser flashes and quasicontinuous illumination, (i.e., light for a few seconds) and recorded proton release and uptake, electric signals, and absorbance changes. We found long-living, correlated, kinetic components in all three measurements, which-with exception of the absorbance changes-had not been seen in earlier investigations. At room temperature, the O-intermediate decays to bR in two transitions with rate constants of 350 and 1800 ms. Proton uptake from the cytoplasmic surface continues with similar kinetics until the bR state is reestablished. An analysis of the data from quasicontinuous illumination and multiple flash excitation led to the conclusion that acceleration of the photocycle in continuous light is due to excitation of the N-component in the fast N<-->O equilibrium, which is established at the beginning of the severe cycle slowdown. This conclusion was confirmed by an action spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号