首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10−6 g of wet pig feces in 500 ml of phosphate-buffered saline and 10−4 g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.  相似文献   

2.
A PCR-based assay (Mrnif) targeting the nifH gene of Methanobrevibacter ruminantium was developed to detect fecal pollution from domesticated ruminants in environmental water samples. The assay produced the expected amplification product only when the reaction mixture contained DNA extracted from M. ruminantium culture, bovine (80%), sheep (100%), and goat (75%) feces, and water samples from a bovine waste lagoon (100%) and a creek contaminated with bovine lagoon waste (100%). The assay appears to be specific and sensitive and can distinguish between domesticated- and nondomesticated-ruminant fecal pollution in environmental samples.  相似文献   

3.
Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was performed using DNA extracts from water and sediment samples collected from a watershed directly impacted by cattle fecal pollution (WS1) and from a watershed impacted only through runoff (WS2). In WS1, the ruminant-specific Bacteroidales 16S rRNA gene marker CF128F was detected in 65% of the water samples, while the non-16S rRNA gene markers Bac1, Bac2, and Bac5 were found in 32 to 37% of the water samples. In contrast, all source-specific markers were detected in less than 6% of the water samples from WS2. Binary logistic regressions (BLRs) revealed that the occurrence of Bac32F and CF128F was significantly correlated with season as a temporal factor and watershed as a site factor. BLRs also indicated that the dynamics of fecal-source-tracking markers correlated with the density of a traditional fecal indicator (P < 0.001). Overall, our results suggest that a combination of 16S rRNA gene and non-16S rRNA gene markers provides a higher level of confidence for tracking unknown sources of fecal pollution in environmental samples. This study also provided practical insights for implementation of microbial source-tracking practices to determine sources of fecal pollution and the influence of environmental variables on the occurrence of source-specific markers.  相似文献   

4.
In this study, we evaluated the specificity, distribution, and sensitivity of Prevotella strain-based (PF163 and PigBac1) and methanogen-based (P23-2) PCR assays proposed to detect swine fecal pollution in environmental waters. The assays were tested against 222 fecal DNA extracts derived from target and nontarget animal hosts and against 34 groundwater and 15 surface water samples from five different sites. We also investigated the phylogenetic diversity of 1,340 “Bacteroidales” 16S rRNA gene sequences derived from swine feces, swine waste lagoons, swine manure pits, and waters adjacent to swine operations. Most swine fecal samples were positive for the host-specific Prevotella-based PCR assays (80 to 87%), while fewer were positive with the methanogen-targeted PCR assay (53%). Similarly, the Prevotella markers were detected more frequently than the methanogen-targeted assay markers in waters historically impacted with swine fecal contamination. However, the PF163 PCR assay cross-reacted with 23% of nontarget fecal DNA extracts, although Bayesian statistics suggested that it yielded the highest probability of detecting pig fecal contamination in a given water sample. Phylogenetic analyses revealed previously unknown swine-associated clades comprised of clones from geographically diverse swine sources and from water samples adjacent to swine operations that are not targeted by the Prevotella assays. While deeper sequencing coverage might be necessary to better understand the molecular diversity of fecal Bacteroidales species, results of sequence analyses supported the presence of swine fecal pollution in the studied watersheds. Overall, due to nontarget cross amplification and poor geographic stability of currently available host-specific PCR assays, development of additional assays is necessary to accurately detect sources of swine fecal pollution.The size of swine farming operations has increased significantly during the last few decades as a result of the high demand for pork products. In fact, pork is now considered the most popular meat worldwide (15). In the United States, the number of large confined swine animal units increased by 3 orders of magnitude from 1982 to 1997 (18), making the swine industry among the top three producers of domesticated animal feces. A direct consequence of this trend is the increase in swine fecal waste, which in turn has raised environmental concerns. When introduced to water, swine fecal waste can present a risk to human health because this waste can harbor a variety of human pathogens (5, 13, 15, 21, 36). The diversity and relatively high frequency of human pathogens in swine feces make swine important reservoirs of zoonotic pathogens. Moreover, the marked increase in the number of large operations has resulted in increased manure production and application in small geographic areas, creating an imbalance between the assimilative capacity of manure-treated farmland and the amount of manure nutrients produced on each farm. This imbalance is evidenced by the 20% increase (from 1982 to 1997) in nitrogen and phosphorus produced in swine operations, thus potentially contributing to the detrimental eutrophication of aquatic ecosystems (18). Swine manure spills and leaks are commonplace in the top hog production states, such as Iowa and North Carolina, due to failure or overflow of manure storage, uncontrolled runoff from open feedlots, improper manure application on cropland, deliberate pumping of manure onto the ground, and intentional breaches in storage lagoons (28, 37).Recently, swine-associated PCR-based methods targeting members of the “Bacteroidales” order (i.e., Prevotella species) and methanogen populations (12, 29, 35) have been proposed to discriminate swine fecal pollution events from other potential fecal contributions (i.e., human, bovine, and wildlife) to environmental waters. Nevertheless, the value of these assays in reliably detecting fecal pollution sources in watershed-based studies has not been thoroughly investigated. The main goals of this study were to determine host specificity, frequency of detection, and detection limits of currently available swine-associated PCR-based, microbial source tracking assays. To achieve these objectives, assays were tested against swine and nontarget fecal samples, samples from swine manure pits and swine waste lagoons, and water samples presumed to be impacted by swine fecal sources. Furthermore, we investigated the phylogenetic diversity of Bacteroidales 16S rRNA gene sequences derived from some of the aforementioned samples to resolve the level of specificity, relative abundance, and environmental occurrence of Bacteroidales-specific 16S rRNA gene sequences.  相似文献   

5.
Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described bovine feces-specific genetic markers and a method for the enumeration of these markers using a Markov chain Monte Carlo approach. Both assays exhibited a range of quantification from 25 to 2 × 106 copies of target DNA, with a coefficient of variation of <2.1%. One of these assays can be multiplexed with an internal amplification control to simultaneously detect the bovine-specific genetic target and presence of amplification inhibitors. The assays detected only cattle fecal specimens when tested against 204 fecal DNA extracts from 16 different animal species and also demonstrated a broad distribution among individual bovine samples (98 to 100%) collected from five geographically distinct locations. The abundance of each bovine-specific genetic marker was measured in 48 individual samples and compared to quantitative PCR-enumerated quantities of rRNA gene sequences representing total Bacteroidetes, Bacteroides thetaiotaomicron, and enterococci in the same specimens. Acceptable assay performance combined with the prevalence of DNA targets across different cattle populations provides experimental evidence that these quantitative assays will be useful in monitoring bovine fecal pollution in ambient waters.  相似文献   

6.
Bifidobacteria have been recommended as potential indicators of human fecal pollution in surface waters even though very little is known about their presence in nonhuman fecal sources. The objective of this research was to shed light on the occurrence and molecular diversity of this fecal indicator group in different animals and environmental waters. Genus- and species-specific 16S rRNA gene PCR assays were used to study the presence of bifidobacteria among 269 fecal DNA extracts from 32 different animals. Twelve samples from three wastewater treatment plants and 34 water samples from two fecally impacted watersheds were also tested. The species-specific assays showed that Bifidobacterium adolescentis, B. bifidum, B. dentium, and B. catenulatum had the broadest host distribution (11.9 to 17.4%), whereas B. breve, B. infantis, and B. longum were detected in fewer than 3% of all fecal samples. Phylogenetic analysis of 356 bifidobacterial clones obtained from different animal feces showed that ca. 67% of all of the sequences clustered with cultured bifidobacteria, while the rest formed a supercluster with low sequence identity (i.e., <94%) to previously described Bifidobacterium spp. The B. pseudolongum subcluster (>97% similarity) contained 53 fecal sequences from seven different animal hosts, suggesting the cosmopolitan distribution of members of this clade. In contrast, two clades containing B. thermophilum and B. boum clustered exclusively with 37 and 18 pig fecal clones, respectively, suggesting host specificity. Using species-specific assays, bifidobacteria were detected in only two of the surface water DNA extracts, although other fecal anaerobic bacteria were detected in these waters. Overall, the results suggest that the use of bifidobacterial species as potential markers to monitor human fecal pollution in natural waters may be questionable.  相似文献   

7.
The microbiological quality of coastal or river water can be affected by fecal contamination from human or animal sources. To discriminate pig fecal pollution from other pollution, a library-independent microbial source tracking method targeting Bacteroidales host-specific 16S rRNA gene markers by real-time PCR was designed. Two pig-specific Bacteroidales markers (Pig-1-Bac and Pig-2-Bac) were designed using 16S rRNA gene Bacteroidales clone libraries from pig feces and slurry. For these two pig markers, 98 to 100% sensitivity and 100% specificity were obtained when tested by TaqMan real-time PCR. A decrease in the concentrations of Pig-1-Bac and Pig-2-Bac markers was observed throughout the slurry treatment chain. The two newly designed pig-specific Bacteroidales markers, plus the human-specific (HF183) and ruminant-specific (BacR) Bacteroidales markers, were then applied to river water samples (n = 24) representing 14 different sites from the French Daoulas River catchment (Brittany, France). Pig-1-Bac and Pig-2-Bac were quantified in 25% and 62.5%, respectively, of samples collected around pig farms, with concentrations ranging from 3.6 to 4.1 log10 copies per 100 ml of water. They were detected in water samples collected downstream from pig farms but never detected near cattle farms. HF183 was quantified in 90% of water samples collected downstream near Daoulas town, with concentrations ranging between 3.6 and 4.4 log10 copies per 100 ml of water, and BacR in all water samples collected around cattle farms, with concentrations ranging between 4.6 and 6.0 log10 copies per 100 ml of water. The results of this study highlight that pig fecal contamination was not as frequent as human or bovine fecal contamination and that fecal pollution generally came from multiple origins. The two pig-specific Bacteroidales markers can be applied to environmental water samples to detect pig fecal pollution.Human and animal fecal pollution of coastal environments affects shellfish and recreational water quality and safety, in addition to causing economic losses from the closure of shellfish harvesting areas and from bathing restrictions (13, 19, 33). Human feces are known to contain human-specific enteric pathogens (3, 18, 28), but animals can also be reservoirs for numerous enteric human pathogens, such as Escherichia coli O157:H17, Salmonella spp., Mycobacterium spp., or Listeria spp., that may persist in the soil or surface waters (6, 8, 22, 24). Among animals, pigs are known to carry human pathogens that are excreted with fecal wastes. There are approximately 125 million pigs in the European Union (EU) and 114 million in North America (12, 36, 48), generating an estimated 100 and 91 million tons of pig slurry per year, respectively (4). France, the third largest pig producer in the EU, with about 23,000 farms, generates 8 to 10 million tons of pig slurry per year. Brittany accounts for 56.1% of the total national pig production on only 6% (27,200 km2) of the French territory, though it has 40% (2,700 km) of the coastline. This production could contaminate the environment when tanks on farms overflow, when slurry or compost is spread onto soils, or to a lesser extent, when lagoon surface waters are used for irrigation (38, 47, 52).Fecal contamination in shellfish harvesting and bathing areas is currently evaluated by the detection and enumeration of culturable facultative-anaerobic bacteria, such as E. coli, enterococci, or fecal coliforms (11), in shellfish and bathing waters (European Directives 2006/113/CE and 2006/7/CE). Pigs are among the potential sources of E. coli inputs to the environment; a pig produces approximately 1 × 107 E. coli bacteria per gram of feces, which corresponds to an E. coli flow rate per day that is 28 times higher than that for one human (16, 34, 55).E. coli is not a good indicator of fecal sources of pollution in water because of its presence in both human and animal feces; therefore, alternative fecal indicators must be used. Microbial source tracking methods (44) are being developed to discriminate between human and nonhuman sources of fecal contamination and to distinguish contamination from different animal species (17, 46, 54). Many of these methods are library dependent, requiring a large number of isolates to be cultured and tested, which is time consuming and labor intensive. For these reasons, library-independent methods are preferred for the detection of host-specific markers.The detection of host-specific Bacteroidales markers is a promising library-independent method and has been used for identifying contamination from human and bovine origins (25, 29, 39, 40, 45). In this study, we selected Bacteroidales 16S rRNA gene markers and real-time PCR to focus on fecal contamination from pigs. To date, only one pig-specific Bacteroidales 16S rRNA gene marker has been developed and used on water samples for the identification of pig fecal contamination by real-time PCR assay (SYBR green) (37). When this pig-specific Bacteroidales marker was tested on a small number of fecal samples (n = 16), it showed some cross-reaction with human and cow feces.The present study investigated pig fecal contamination in a French catchment, the Daoulas estuary (Brittany), which has commercial and recreational shellfish harvesting areas and which is potentially subject to fecal contamination. The aims of the present study were (i) to design new primers for the detection and quantification of pig-specific Bacteroidales 16S rRNA genes by TaqMan analysis; (ii) to validate the sensitivity and specificity of the new primers and TaqMan assay using target (feces, slurry, compost, and lagoon water samples) and nontarget (human and other animal sources) DNA, respectively; and (iii) to evaluate the TaqMan assay for proper detection and quantitative estimation of pig-associated fecal pollution. The study represents the first application of pig-specific Bacteroidales markers using a TaqMan assay in Europe and included a monitoring study of marker levels throughout the various stages of slurry treatment.  相似文献   

8.
In this study, the microbiological quality of roof-harvested rainwater was assessed by monitoring the concentrations of Escherichia coli, enterococci, Clostridium perfringens, and Bacteroides spp. in rainwater obtained from tanks in Southeast Queensland, Australia. Samples were also tested using real-time PCR (with SYBR Green I dye) for the presence of potential pathogenic microorganisms. Of the 27 rainwater samples tested, 17 (63%), 21 (78%), 13 (48%), and 24 (89%) were positive for E. coli, enterococci, C. perfringens, and Bacteroides spp., respectively. Of the 27 samples, 11 (41%), 7 (26%), 4 (15%), 3 (11%), and 1 (4%) were PCR positive for the Campylobacter coli ceuE gene, the Legionella pneumophila mip gene, the Aeromonas hydrophila lip gene, the Salmonella invA gene, and the Campylobacter jejuni mapA gene. Of the 21 samples tested, 4 (19%) were positive for the Giardia lamblia β-giardin gene. The binary logistic regression model indicated a positive correlation (P < 0.02) between the presence/absence of enterococci and A. hydrophila. In contrast, the presence/absence of the remaining potential pathogens did not correlate with traditional fecal indicators. The poor correlation between fecal indicators and potential pathogens suggested that fecal indicators may not be adequate to assess the microbiological quality of rainwater and consequent health risk.  相似文献   

9.
The study investigated the prevalence of Campylobacter spp. in Finnish cattle at slaughter and carcass contamination after slaughter. During the period January to December 2003, bovine rectal fecal samples (n = 952) and carcass surface samples (n = 948) from 12 out of 15 Finnish slaughterhouses were examined. In total, campylobacters were detected in 31.1% of fecal samples and in 3.5% of carcass surface samples. Campylobacter jejuni was isolated from 19.5%, Campylobacter coli from 2.2%, and presumptive Campylobacter hyointestinalis from 10.8% of fecal samples. Campylobacters were detected in 4.4% and 37.4% of the fecal samples examined both by direct culture and by enrichment (n = 730), respectively, suggesting a low level of campylobacters in the intestinal content. A slightly increasing trend was observed in the overall prevalence of campylobacters towards the end of summer and autumn. Seventeen different serotypes were detected among the fecal C. jejuni isolates using a set of 25 commercial antisera for serotyping heat-stable antigens (Penner) of C. jejuni by passive hemagglutination. The predominant serotypes, Pen2 and Pen4-complex, were isolated from 52% of the fecal samples. Subtyping by pulsed-field gel electrophoresis (SmaI) yielded 56 and 20 subtypes out of 330 fecal and 70 carcass C. jejuni isolates, respectively. MICs of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline for 187 C. jejuni isolates were determined using a commercial broth microdilution method. Sixteen (9%) of the isolates were resistant to at least one of the antimicrobials tested. Resistance to nalidixic acid was most commonly detected (6%). No multiresistance was observed.  相似文献   

10.
Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 μl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking “toolbox.”  相似文献   

11.
Bacterial strains were isolated from beach water samples using the original Environmental Protection Agency method for Escherichia coli enumeration and analyzed by pulsed-field gel electrophoresis (PFGE). Identical PFGE patterns were found for numerous isolates from 4 of the 9 days sampled, suggesting environmental replication. 16S rRNA gene sequencing, API 20E biochemical testing, and the absence of β-glucuronidase activity revealed that these clonal isolates were Klebsiella, Citrobacter, and Enterobacter spp. In contrast, 82% of the nonclonal isolates from water samples were confirmed to be E. coli, and 16% were identified as other fecal coliforms. These nonclonal isolates produced a diverse range of PFGE patterns similar to those of isolates obtained directly from untreated sewage and gull droppings. β-Glucuronidase activity was critical in distinguishing E. coli from other fecal coliforms, particularly for the clonal isolates. These findings demonstrate that E. coli is a better indicator of fecal pollution than fecal coliforms, which may replicate in the environment and falsely elevate indicator organism levels.  相似文献   

12.
Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds.  相似文献   

13.
14.
The survival of enteric bacteria was measured in bovine feces on pasture. In each season, 11 cow pats were prepared from a mixture of fresh dairy cattle feces and sampled for up to 150 days. Four pats were analyzed for Escherichia coli, fecal streptococci, and enterococci, and four inoculated pats were analyzed for Campylobacter jejuni and Salmonella enterica. Two pats were placed on drainage collectors, and another pat was fitted with a temperature probe. In the first 1 to 3 weeks, there were increases (up to 1.5 orders of magnitude) in the counts of enterococci (in four seasons), E. coli (three seasons), fecal streptococci (three seasons), and S. enterica (two seasons), but there was no increase in the counts of C. jejuni. Thereafter, the counts decreased, giving an average ranking of the times necessary for 90% inactivation of C. jejuni (6.2 days from deposition) < fecal streptococci (35 days) < S. enterica (38 days) < E. coli (48 days) < enterococci (56 days). The pat temperature probably influenced bacterial growth, but the pattern of increases and decreases was primarily determined by desiccation; growth occurred when the water content was greater than 80%, but at a water content of 70 to 75% counts decreased. E. coli and enterococcus regrowth appeared to result from pat rehydration. Of 20 monthly leaching losses of E. coli, 16 were <10% of the total counts in the pat, and 12 were <1%. Drainage losses of C. jejuni (generally <1%) were detected for only 1 to 2 months. Although enterococci exhibited the best survival rate, higher final counts suggested that E. coli is the more practical indicator of bovine fecal pollution.  相似文献   

15.
Legionella-contaminated hot water systems and moist sanitary areas in six hospitals were sampled for amoebae by following a standardized collection protocol. Genus identifications and temperature tolerance determinations were made. Amoebae identified as Hartmannella vermiformis (65%), Echinamoebae spp. (15%), Saccamoebae spp. (12%), and Vahlkampfia spp. (9%) were detected in 29 of 56 (52%) hot water samples. Twenty-three of 49 (47%) swabs obtained from moist areas were amoeba positive. The following genera were identified: Acanthamoeba (22%), Naegleria (22%), Vahlkampfia (20%), Hartmannella (15%), and Vanella (7%). The temperature tolerance of amoebae from hot water systems was strikingly different from that of amoebae from moist areas. At 44°C on agar, 59% of amoebic isolates sampled from hot water systems showed growth. The corresponding value for isolates from moist areas was only 17%. Six Acanthamoeba isolates from the moist areas were considered potential pathogens. Four Hartmannella and two Saccamoeba isolates from hot water could be cultured at 53°C.  相似文献   

16.

Background

PCR has evolved into one of the most promising tools for T. cruzi detection in the diagnosis and control of Chagas disease. However, general use of the technique is hampered by its complexity and the lack of standardization.

Methodology

We here present the development and phase I evaluation of the T. cruzi OligoC-TesT, a simple and standardized dipstick format for detection of PCR amplified T. cruzi DNA. The specificity and sensitivity of the assay were evaluated on blood samples from 60 Chagas non-endemic and 48 endemic control persons and on biological samples from 33 patients, 7 reservoir animals, and 14 vectors collected in Chile.

Principal Findings

The lower detection limits of the T. cruzi OligoC-TesT were 1 pg and 1 to 10 fg of DNA from T. cruzi lineage I and II, respectively. The test showed a specificity of 100% (95% confidence interval [CI]: 96.6%–100%) on the control samples and a sensitivity of 93.9% (95% CI: 80.4%–98.3%), 100% (95% CI: 64.6%–100%), and 100% (95% CI: 78.5%–100%) on the human, rodent, and vector samples, respectively.

Conclusions

The T. cruzi OligoC-TesT showed high sensitivity and specificity on a diverse panel of biological samples. The new tool is an important step towards simplified and standardized molecular diagnosis of Chagas disease.  相似文献   

17.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 × 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.  相似文献   

18.
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.  相似文献   

19.
A new real-time PCR method is presented that detects and quantifies three tetracycline resistance (Tcr) genes [tet(O), tet(W), and tet(Q)] in mixed microbial communities resident in feedlot lagoon wastewater. Tcr gene real-time TaqMan primer-probe sets were developed and optimized to quantify the Tcr genes present in seven different cattle feedlot lagoons, to validate the method, and to assess whether resistance gene concentrations correlate with free-tetracycline levels in lagoon waters. The method proved to be sensitive across a wide range of gene concentrations and provided consistent and reproducible results from complex lagoon water samples. The log10 of the sum of the three resistance gene concentrations was correlated with free-tetracycline levels (r2 = 0.50, P < 0.001; n = 18), with the geometric means of individual resistance concentrations ranging from 4- to 8.3-fold greater in lagoon samples with above-median tetracycline levels (>1.95 μg/liter by enzyme-linked immunosorbent assay techniques) than in below-median lagoon samples. Of the three Tcr genes tested, tet(W) and tet(Q) were more commonly found in lagoon water samples. Successful development of this real-time PCR assay will permit other studies quantifying Tcr gene numbers in environmental and other samples.  相似文献   

20.
There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest.The ability to discriminate between bovine and other sources of fecal contamination is necessary for the accurate evaluation of human health risks associated with agricultural runoff and focused water quality management to make waters safe for human use. Many methods have been proposed to identify bovine fecal pollution using a variety of different microbiology and molecular techniques. One of the most widely used approaches utilizes a PCR to amplify a gene target that is specifically found in a host population. Currently, there are numerous PCR-based assays for the detection and/or quantitative assessment of bovine fecal pollution available for microbial source-tracking (MST) applications (1, 5-7, 11, 14, 17, 18, 21, 23). These assays target genes ranging from mitochondrial DNA to ribosomal rRNA to other functional genes involved in microorganism-host interactions.The majority of the reported bovine-associated PCR assays target 16S rRNA genes from the order Bacteroidales. This bacterial group constitutes a large proportion of the normal gut microbiota of most animals, including bovines (28), and contains subpopulations closely associated with other animal hosts such as swine, horse, and human (1, 3, 6, 18, 24). Host-associated PCR-based assays targeting Bacteroidales genetic markers have been used to investigate the sources and levels of fecal pollution at a number of beaches and inland watersheds, with variable levels of success (10, 13, 22, 27). Researchers have postulated that differences in host animal age, health, diet, and geographic location may influence bacterial community structures in the bovine gastrointestinal tract (2, 9, 26). Without a priori knowledge of the potential representational bias introduced by such factors, it may be difficult to use these assays with confidence as indicators of bovine fecal pollution.Assay specificity and sensitivity and the prevalence and abundance of genetic marker determinations are typically estimated from the systematic testing of a collection of reference fecal sources collected from known animal sources. However, the characterization of assay performance has been limited, in most cases, to animal sources originating from a particular geographic region or industry, such as dairy or beef. The determination of assay performance across a range of different host populations is essential as the field moves toward the implementation of PCR-based host-associated fecal pollution assessment approaches.We report a performance study of seven PCR and quantitative PCR (qPCR) assays targeting Bacteroidales genes reported to be associated with either ruminant (e.g., bovine, goat, sheep, deer, and others) or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations. Assay specificity was determined by testing 175 fecal DNA extracts from 24 different animal species. For qPCR assays, the abundance of each genetic marker was measured within each bovine population and compared to quantities of Bacteroidales 16S rRNA genetic markers. These analyses indicated large discrepancies in assay performance across different bovine populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号