首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact forces and moments act on orthopaedic implants such as joint replacements. The three forces and three moment components can be measured by six internal strain gauges and wireless telemetric data transmission. The accuracy of instrumented implants is restricted by their small size, varying modes of load transfer, and the accuracy of calibration. Aims of this study were to test with finite element studies design features to improve the accuracy, to develop simple but accurate calibration arrangements, and to select the best mathematical method for calculating the calibration constants. Several instrumented implants, and commercial and test transducers were calibrated using different loading setups and mathematical methods. It was found that the arrangement of flexible elements such as bellows or notches between the areas of load transfer and the central sensor locations is most effective to improve the accuracy. Increasing the rigidity of the implant areas, which are fixed in bones or articulate against joint surfaces, is less effective. Simple but accurate calibration of the six force and moment components can be achieved by applying eccentric forces instead of central forces and pure moments. Three different methods for calculating the measuring constants proved to be equally well suited. Employing these improvements makes it possible to keep the average measuring errors of many instrumented implants below 1-2% of the calibration ranges, including cross talk. Additional errors caused by noise of the transmitted signals can be reduced by filtering if this is permitted by the sampling rate and the required frequency content of the loads.  相似文献   

2.
In view of the importance of impedance plethysmography requirements are formulated for a modern impedance measuring device basing on a long experience with this method of measurement. The principle mode of action of the measuring equipment and the pneumatics with the timing element are described. A number of recordings is shown to illustrate the universality of the measuring equipment.  相似文献   

3.
A method is described for using and calibrating the Keston polarimetric attachment to the Beckman DU spectrophotometer which dispenses with the need to reset, at each wavelength, the symmetry of the analyzer positions about total extinction with the polarizer. The instrument is calibrated with sucrose solutions of concentrations from 2.5 to 40%, over a wave-length range of 250 to 675 nm. The constancy of calibration with a maximum error of 6.5% over this range is demonstrated. The smooth but slight dependency of the calibration constant on wavelength is shown and attributed to the optical properties of the Nicol prisms. Linear regression of the data allows for a high degree of accuracy in measuring the rotation of a sample, as a function of wavelength.  相似文献   

4.
With rising demand on highly accurate acquisition of small motion the use of video-based motion capturing becomes more and more popular. However, the performance of these systems strongly depends on a variety of influencing factors. A method was developed in order to systematically assess accuracy and precision of motion capturing systems with regard to influential system parameters. A calibration and measurement robot was designed to perform a repeatable dynamic calibration and to determine the resultant system accuracy and precision in a control volume investigating small motion magnitudes (180x180x150mm(3)). The procedure was exemplified on the Vicon-460 system. Following parameters were analyzed: Camera setup, calibration volume, marker size and lens filter application. Equipped with four cameras the Vicon-460 system provided an overall accuracy of 63+/-5mum and overall precision (noise level) of 15mum for the most favorable parameter setting. Arbitrary changes in camera arrangement revealed variations in mean accuracy between 76 and 129mum. The noise level normal to the cameras' projection plane was found higher compared to the other coordinate directions. Measurements including regions unaffected by the dynamic calibration reflected considerably lower accuracy (221+/-79mum). Lager marker diameters led to higher accuracy and precision. Accuracy dropped significantly when using an optical lens filter. This study revealed significant influence of the system environment on the performance of video-based motion capturing systems. With careful configuration, optical motion capturing provides a powerful measuring opportunity for the majority of biomechanical applications.  相似文献   

5.
测定植物抗寒性的电阻抗图谱法   总被引:26,自引:0,他引:26  
电阻抗图谱(electrical impedance spectroscopy,EIS)分析作为测定植物抗寒性的一种方法,在农业、林业和园艺领域的应用正在不断扩大。该文从EIS的原理入手,讨论了影响电阻抗特性的生理和物理因子;介绍了测定EIS适用的模型;阐述了用EIS测定抗寒性的方法。在EIS分析中,胞外电阻率(re)是确定抗寒性最适用的一个参数,弛豫时间(τ1)是精确度最高的参数。  相似文献   

6.
A comparison of calibration methods for stereo fluoroscopic imaging systems   总被引:1,自引:0,他引:1  
Stereo (biplane) fluoroscopic imaging systems are considered the most accurate and precise systems to study joint kinematics in vivo. Calibration of a biplane fluoroscopy system consists of three steps: (1) correction for spatial image distortion; (2) calculation of the focus position; and (3) calculation of the relative position and orientation of the two fluoroscopy systems with respect to each other. In this study we compared 6 methods for calibrating a biplane fluoroscopy system including a new method using a novel nested-optimization technique. To quantify bias and precision, an electronic digital caliper instrumented with two tantalum markers on radiolucent posts was imaged in three configurations, and for each configuration placed in ten static poses distributed throughout the viewing volume. Bias and precision were calculated as the mean and standard deviation of the displacement of the markers measured between the three caliper configurations. The data demonstrated that it is essential to correct for image distortion when sub-millimeter accuracy is required. We recommend calibrating a stereo fluoroscopic imaging system using an accurately machined plate and a calibration cube, which improved accuracy 2-3 times compared to the other calibration methods. Once image distortion is properly corrected, the focus position should be determined using the Direct Linear Transformation (DLT) method for its increased speed and equivalent accuracy compared to the novel nested-optimization method. The DLT method also automatically provides the 3D fluoroscopy configuration. Using the recommended calibration methodology, bias and precision of 0.09 and 0.05 mm or better can be expected for measuring inter-marker distances.  相似文献   

7.
The goal of this study was to develop a new implantable transducer for measuring anterior cruciate ligament (ACL) graft tension postoperatively in patients who have undergone ACL reconstructive surgery. A unique approach was taken of integrating the transducer into a femoral fixation device. To devise a practical in vivo calibration protocol for the fixation device transducer (FDT), several hypotheses were investigated: (1) The use of a cable versus the actual graft as the means for applying load to the FDT during calibration has no significant effect on the accuracy of the FDT tension measurements; (2) the number of flexion angles at which the device is calibrated has no significant effect on the accuracy of the FDT measurements; (3) the friction between the graft and femoral tunnel has no significant effect on measurement accuracy. To provide data for testing these hypotheses, the FDT was first calibrated with both a cable and a graft over the full range of flexion. Then graft tension was measured simultaneously with both the FDT on the femoral side and load cells, which were connected to the graft on the tibial side, as five cadaver knees were loaded externally. Measurements were made with both standard and overdrilled tunnels. The error in the FDT tension measurements was the difference between the graft tension measured by the FDT and the load cells. Results of the statistical analyses showed that neither the means of applying the calibration load, the number of flexion angles used for calibration, nor the tunnel size had a significant effect on the accuracy of the FDT. Thus a cable may be used instead of the graft to transmit loads to the FDT during calibration, thus simplifying the procedure. Accurate calibration requires data from just three flexion angles of 0, 45, and 90 deg and a curve fit to obtain a calibration curve over a continuous range of flexion within the limits of this angle group. Since friction did not adversely affect the measurement accuracy of the FDT, the femoral tunnel can be drilled to match the diameter of the graft and does not need to be overdrilled. Following these procedures, the error in measuring graft tension with the FDT averages less than 10 percent relative to a full-scale load of 257 N.  相似文献   

8.
The six-revolute-joint instrumented spatial linkage (6R ISL) is often the measurement system of choice for monitoring motion of anatomical joints. However, due to tolerances of the linkage parameters, the system may not be as accurate as desired. A calibration algorithm and associated calibration device have been developed to refine the initial measurements of the ISL's mechanical and electrical parameters so that the measurement of six-degree-of-freedom motion will be most accurate within the workspace of the anatomical joint. The algorithm adjusts the magnitudes of selected linkage parameters to reduce the squared differences between the six known and calculated anatomical position parameters at all the calibration positions. Weighting is permitted so as to obtain a linkage parameter set that is specialized for measuring certain anatomical position parameters. Output of the algorithm includes estimates of the measuring system accuracy. For a particular knee-motion-measuring ISL and calibration device, several interdependent design parameter relationships have been identified. These interdependent relationships are due to the configuration of the ISL and calibration device, the number of calibration positions, and the limited resolution of the devices that monitor the position of the linkage joints. It is shown that if interdependence is not eliminated, then the resulting ISL parameter set will not be accurate in measuring motion outside of the calibration positions, even though these positions are within the ISL workspace.  相似文献   

9.
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.  相似文献   

10.
It is assumed that the spectra of fluorescent probes indo-1 and fura-2 in the cytoplasm are linear combinations of the spectra of calcium-bound and free probes with weight factors proportional to the concentrations of these forms. When the concentration of calcium is measured by the dual-wavelength method, the above assumption is employed without testing. A multiwavelength method for measuring free cytosolic calcium concentration is described in the present study. The method is based on the registration of the fluorescence spectra of the probe with an optical multichannel analyzer and deconvolution of the spectra into components, corresponding to free and bound forms of the probe. A mismatch is also calculated to allow estimation of deconvolution accuracy. It was found that the spectra, recorded in aqueous calibration solution with varying calcium concentrations, can be deconvoluted into components, obtained both in the absence of calcium and at its saturating concentration. When the spectrum of the probe in the cytoplasm is deconvoluted into the same components the mismatch is higher. When aqueous calibration is used, the cytosolic calcium concentration determined by the dual-wavelength method is dependent considerably on the selected wavelengths. Our data indicate that this phenomenon may be associated with the lower polarity of cytoplasm compared to the aqueous calibration solution. Addition of either ethanol or glycerol into the calibration medium results in a considerable decrease in the mismatch. The optimal concentration of ethanol is 22-32%, and depends on the type and condition of cells tested. It is shown that the use of calibration spectra obtained in aqueous solutions leads to considerable overestimation of cytosolic calcium concentration.  相似文献   

11.
The development of a method for the direct determination of cadmium (Cd) and lead (Pb) in blood samples by GFAAS, is described. Samples were properly diluted by a matrix modifier to enable measuring both analytes in one solution. For the determination of Cd, a matrix-matched, and for the determination of Pb, an aqueous calibration was used. The precision, accuracy, and detection limits of this method are presented. A method is applied to the investigation of Cd and Pb levels in a general Czech population, selected according to the WHO-MONICA project criteria. To avoid possible contaminations, samples were treated in a clean room class 100.  相似文献   

12.
In order to evaluate the impact of neuromuscular disorders affecting the upper extremities, the functional use of the arm need to be evaluated during daily activities. A system suitable for measuring arm kinematics should be ambulatory and not interfere with activities of daily living. A measurement system based on miniature accelerometers and gyroscopes is adequate because the sensors are small and do not suffer from line of sight problems. A disadvantage of such sensors is the cumulative drift around the vertical and the problems with aligning the sensor with the segment. A method that uses constraints in the elbow to measure the orientation of the lower arm with respect to the upper arm is described. This requires a calibration method to determine the exact orientation of each of the sensors with respect to the segment. Some preliminary measurements were analyzed and they indicated a strong reduction in orientation error around the vertical. It seemed that the accuracy of the method is limited by the accuracy of the sensor to segment calibration.  相似文献   

13.
C S Owen 《Cell calcium》1991,12(6):385-393
In the theory of measurement of calcium ion activity by determination of Fura-2 fluorescence at two excitation wavelengths, the accuracy of the result depends upon the accuracy both of the sample measurements and of the calibration measurements which are made on calcium-bound and free dye. Two factors underlie adequate calibration and accuracy. The first is the elimination of systematic error due to spectral shifts arising from the intracellular environment felt by the dye. To this end, detailed comparisons between complete spectra of both calcium-bound and calcium-free Fura-2 can be used to help separate spectral effects due to light absorption by cellular constituents versus polarity and viscosity of the intracellular milieu. The second major factor which determines accuracy is the experimental uncertainty (in both sample and calibration measurements). For samples in which the ratio of bound to free dye is large, the uncertainty in the ratio is also large, even when it is expressed as a percentage of the ratio itself. The errors in calibration measurements impact on the accuracy of the method primarily through the measurements made at wavelengths which are off the spectral peaks of the bound or free dye, since these are the least accurate. In order to obtain a guide to the choice of wavelengths and estimation of the reliability of results, a mathematical expression is derived for the dependence of the accuracy of the method on the accuracy of both sample and calibration measurements.  相似文献   

14.
An apparatus for measuring the impedance of intact biological organs or parts of organs in the frequency range of 10 Hz to 10 MHz is described. In this range impedance exhibits a large dispersion, which is dependent on tissue structures. The time course of alterations of electrical impedance such as occur during ischemia can be recorded with this equipment. Five specimens in five measuring chambers can be examined simultaneously at different temperatures. In the second part of the article, a portable impedance meter for measuring the modulus of impedance near 200 Hz, the phase of impedance at 5 kHz and the local temperature at the measuring point, is described. These parameters permit an intra-operative evaluation of the changing state of ischemic organs. Sterilizable probes with four surface electrodes and an integrated temperature sensor permit atraumatic measurements at the organ surface. The measurement itself is harmless to the tissue.  相似文献   

15.
A monitoring system for measuring movement occurring in a dynamic external fixator used to treat fractures is described. The system measures shortening during fracture healing, micromovement at the fracture site on weight bearing and detects pin loosening. The method of calibration including cadaver experiments is presented. The clinical application is described and the reasons for measuring movement are discussed.  相似文献   

16.
The impedance method has been used extensively to calculate induced electric fields and currents in tissue as a result of applied electromagnetic fields. However, there has previously been no known method for an a priori assessment of the numerical accuracy of the results found by this method. Here, we present a method which permits an a priori assessment of the numerical accuracy of the impedance method applied to physiologically meaningful problems in bioengineering. The assessment method relies on estimating the condition number associated with the impedance matrix for problems with varying shapes, sizes, conductivities, anisotropies, and implementation strategies. Equations have been provided which predict the number of significant figures lost due to poor matrix conditioning as a function of these variables. The results show that, for problems of moderate size and uncomplicated geometry, applied fields should be measured or calculated accurately to at least five or six significant figures. As resolutions are increased and material properties are more widely divergent even more significant figures are needed. The equations provided here should ensure that solutions found from the impedance method are calculated accurately.  相似文献   

17.
To measure impedance one measures or estimates flow, which is commonly done by measuring the pressure drop across a pneumotachometer. The frequency response characteristics of standard pneumotachometer/pressure transducers (PPT) limit their use to relatively low frequencies. Also, the frequency response of PPTs has been reported to be "load" dependent. Thus, the frequency response characteristics measured under "no-load" conditions, which theoretically could be used to compensate subsequent measurements, may not be appropriate for measurements made under loaded conditions. Another method of measuring impedance exists which depends on a reference impedance element other than a pneumotachometer. In this method, an oscillatory flow signal with known amplitude is generated and used to force the system being tested. Unlike PPTs, this oscillatory flow generator (OFG) is a closed system that allows measurements to be made only during breath holding. Our objective was to determine whether the frequency response of a PPT could be compensated using measurements made under no-load conditions, such that it accurately measured an impedance load. The frequency response of the PPT under no-load conditions was measured by the OFG and used to compensate the output of the PPT in subsequent impedance measurements. The compensated PPT was used to measure the impedance of a mechanical structure and the impedances of four human subjects. The impedances of the mechanical structure and the subjects were also measured using the OFG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An efficient impedance method was developed for rapid evaluation of cosmetic preservatives. The method used decimal reduction time or D-value to assess preservative efficacies. The D-value, which was calculated from the plot of Log CFU ml–1 versus time by linear regression analysis, could be obtained within 48 h. Thus, the time required for the challenge test was reduced from 4–8 weeks with the standard procedures (eg US Pharmacopeia), to 2 days with the current method. A calibration curve (r=-0.95) was established by plotting the Log CFU ml–1 versus capacitance detection time (DT) of 108 samples. With the calibration, CFU can be estimated directly from the impedance test without plating. Two commercial biocides and several other chemicals were evaluated in a shampoo by the impedance procedure againstPseudomonas aeruginosa. The D-values obtained from the impedance test were not significantly different from those produced by the conventional plate count method. The technique was found to be particularly useful when screening a large number of compounds to find novel preservatives and synergistic preservative combinations.  相似文献   

19.
A sensitive, precise and accurate stable isotope dilution high-performance liquid chromatography-electrospray ionization mass spectrometry method has been developed for measuring endogenous 2- and 4-hydroxyestrones, the main catechol estrogens in human urine. Compared to the published methods using gas chromatography-mass spectrometry, this approach simplifies sample preparation and increases the throughput of analysis. The unique part of our method is the use of a simple and rapid derivatization step that forms a hydrazone at the C-17 carbonyl group of catechol estrogens. This derivatization step has greatly enhanced method sensitivity as well as HPLC separability of 2- and 4-hydroxyestrones. Standard curves were linear over a 100-fold calibration range with correlation coefficients for the linear regression curves typically greater than 0.996. The lower limit of quantitation for each catechol estrogen is 1 ng per 10-ml urine sample, with an accuracy of 97-99% and overall precision, including the hydrolysis, extraction and derivatization steps, of 1-3% for samples prepared concurrently and 2-11% for samples prepared in several batches. This method is adequate for measuring the low endogenous levels of catechol estrogens in urine from postmenopausal women.  相似文献   

20.
A new method for the mass calibration of the matrix-assisted laser desorption/ionization-mass spectrometry spectrum is introduced. This method achieves the same accuracy as that of internal calibration but without its drawbacks. The interference and signal suppression by calibration standard are avoided, and a pure/clean sample spectrum is obtained. No prior knowledge about the sample quantity is required for the calibration. The effectiveness of the method is demonstrated with protein identification data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号