首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quenching of variable fluorescence yield (qN) and the quenching of dark level fluorescence yield (q0) directly atributable to high-energy-state fluorescence quenching (qE) was studied to distinguish between energy dissipation in the antenna and light harvesting complexes (antenna quenching) and energy dissipation at the reaction centres (reaction centre quenching). A consistent relationship was obtained between qN and q0 in barley leaves, the green alga Dunaliella C9AA and in pea thylakoids with 2,3,5,6-tetramethyl-p-phenylene diamine (DAD) as mediator of cyclic electron flow around PS 1. This correlated well with the relationship obtained using m-dinitrobenzene (DNB), a chemical model for antenna quenching, to quench fluorescence in Dunaliella C9AA or pea thylakoids. The results also correlated reasonably well with theoretical predictions by the Butler model for antenna quenching, but did not correlate with the predictions for reaction centre quenching. It is postulated that qE quenching therefore occures in the antenna and light harvesting complexes, and that the small deviation from the Butler prediction is due to PS 2 heterogeneity.Abbreviations 9-aa 9-aminoacridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA Ethylenediaminetetra-acetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - Mes 2-(N-morpholino) prophanesulfonate - PS 1 photosystem 1 - PS 2 photosystem 2 - QA and QB primary and secondary stable electron acceptors of photosystem 2 - qN non-photochemical fluorescence quenching coefficient - qE high-energy-state fluorescence quenching coefficient - q0 quenching coefficient for F0 - F0 dark level fluorescence yield - Fm maximum fluorescence yield - Fv variable fluorescence yield - Fv/Fm ratio of variable to total fluorescence yield - DAD 2,3,5,6-tetramethyl-p-phenylene diamine - DNB m-dinitrobenzene  相似文献   

2.
The mechanism of energy-dependent quenching (qE) of chlorophyll fluorescence was studied employing photoacoustic measurements of oxygen evolution and heat release. It is shown that concomitant to the formation of qE the yield of open reaction centers p decreases indicating that qE quenching originates from a process being competitive to fluorescence as well as to photochemistry. The analysis of heat release (rate of thermal deactivation) shows: 1. The competitive process is not given by a still unknown energy storing process. 2. If the competitive process would be a futile cycle the life-times of the involved intermediates had to be faster than 50 s.The results of the photoacoustic measurements are in line with the idea that qE quenching originates from an increased probability of thermal deactivation of excited chlorophylls.Abbreviations F actual fluorescence - Fm fluorescence yield with all PS II reaction centers closed in a light adapted state - F0 fluorescence yield with all PS II reaction centers open in a light adapted state - PS Photosystem - p intrinsic photochemical yield - qE energy-dependent quenching - qI photoinhibition quenching - qN non-photochemical quenching - qP photochemical quenching - qT state transition quenching  相似文献   

3.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F'm fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively - Fv variable fluorescence equal to Fm-F0 - Fs steady state level of fluorescence in light - F'v and F'm variable (F'm-F'0) and maximum fluorescence under steady state light conditions - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - QA the primary, stabile quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qp photochemical quenching of fluorescence - ØO2 quantum yield of CO2-saturated O2 evolution based on absorbed photons  相似文献   

4.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

5.
Henrik Laasch 《Planta》1987,171(2):220-226
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q N ) which are related (q E ) and unrelated (q I ) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q Ito total q N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q Ewas severely affected by heat and osmotic stress. In low light, the response of q Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA 9-aminoacridine - F o basic chlorophyll fluorescence - F o variable chlorophyll fluorescence - L 2 saturating light pulse - PS photosystem - q E pH-dependent, non-photochemical quenching of fluorescence - q I pH-independent, non-photochemical quenching - q N entire non-photochemical quenching - q Q photochemical quenching  相似文献   

6.
In photosynthesis, light energy is absorbed by light‐harvesting complexes and used to drive photochemistry. However, a fraction of absorbed light is lost to non‐photochemical quenching (NPQ) that reflects several important photosynthetic processes to dissipate excess energy. Currently, estimates of NPQ and its individual components (qE, qI, qZ and qT) are measured from pulse‐amplitude‐modulation (PAM) measurements of chlorophyll fluorescence yield and require measurements of the maximal yield of fluorescence in fully dark‐adapted material (Fm), when NPQ is assumed to be negligible. Unfortunately, this approach requires extensive dark acclimation, often precluding widespread or high‐throughput use, particularly under field conditions or in imaging applications, while introducing artefacts when Fm is measured in the presence of residual photodamaged centres. To address these limitations, we derived and characterized a new set of parameters, NPQ(T), and its components that can be (1) measured in a few seconds, allowing for high‐throughput and field applications; (2) does not require full relaxation of quenching processes and thus can be applied to photoinhibited materials; (3) can distinguish between NPQ and chloroplast movements; and (4) can be used to image NPQ in plants with large leaf movements. We discuss the applications benefits and caveats of both approaches.  相似文献   

7.
The initial (F0), maximal (FM) and steady-state (FS) levels of chlorophyll fluorescence emitted by intact pea leaves exposed to various light intensities and environmental conditions, were measured with a modulated fluorescence technique and were analysed in the context of a theory for the energy fluxes within the photochemical apparatus of photosynthesis. The theoretically derived expressions of the fluorescence signals contain only three terms, X=J2p2F/(1–G), Y=T/(1–G) and V, where V is the relative variable fluorescence, J2 is the light absorption flux in PS II, p2F is the probability of fluorescence from PS II, G and T are, respectively, the probabilities for energy transfer between PS II units and for energy cycling between the reaction center and the chlorophyll pool: F0=X, FM=X/(1–Y) and FS=X(1+(YV/(1–Y))). It is demonstrated that the amplitudes of the previously defined coefficients of chlorophyll fluorescence quenching, qP and qN, reflect, not just photochemical (qP) or nonphotochemical (qN) events as implied in the definitions, but both photochemical and nonphotochemical processes of PS II deactivation. The coefficient qP is a measure of the ratio between the actual macroscopic quantum yield of photochemistry in PS II (41-1) in a given light state and its maximal value measured when all PS II traps are open (41-2) in that state, with 41-3 and 41-4. When the partial connection between PS II units is taken into consideration, 1-qP is nonlinearily related to the fraction of closed reaction centers and is dependent on the rate constants of all (photochemical as well as nonphotochemical) exciton-consuming processes in PS II. On the other hand, 1-qN equals the (normalized) ratio of the rate constant of photochemistry (k2b) to the combined rate constant (kN) of all the nonphotochemical deactivation processes excluding the rate constant k22 of energy transfer between PS II units. It is demonstrated that additional (qualitative) information on the individual rate constants, kN-k22 and k2b, is provided by the fluorescence ratios 1/FM and (1/F0)–(1/FM), respectively. Although, in theory, 41-5 is determined by the value of both k2b and kN-k22, experimental results presented in this paper show that, under various environmental conditions, 41-6 is modulated largely through changes in k N, confirming the idea that PS II quantum efficiency is dynamically regulated in vivo by nonphotochemical energy dissipation.Abbreviations Chl chlorophyll - F0, FM and FS initial, maximal and steady-state levels of modulated Chl fluorescence emitted by light-adapted leaves - PS I and II photosystem I and II - qP and qN (previously defined) photochemical and nonphotochemical components of Chl fluorescence quenching  相似文献   

8.
Photoinhibition was examined in naturally exposed willow leaves in the field. In the afternoon on clear and warm days, the quantum yield of electron transport, derived from gas exchange data, was decreased by 28%. Besides this photoinhibition, decreases in the photosynthetic capacity and in the stomatal conductance were also observed. Of these three limitations of carbon assimilation, photoinhibition was the major one at limiting light only.To investigate the generality of photoinhibition, shade- and sun-acclimated leaves of fourteen different species were compared in a laboratory study. Photoinhibition was quantified by fluorescence measurements following exposure to moderate and high light for 30 min. The extent of photoinhibition was inversely related to the photochemical quenching, qp, during exposure (the proportion of open PS II traps). This relationship was the same independent of the species, the light-acclimation state of the leaf and the light intensity. However, sun- and shade-acclimated leaves occupied opposite sides of the relationship: the sun-leaves showed lower photoinhibition and higher qp. The sun-leaves were also more competent than shade-leaves by showing faster recovery from a given level of photoinhibition.Abbreviations F0, FV, FM, FS minimal, variable, maximal and steady-state fluorescence - qN, qi total and photoinhibitory non-photochemical quenching of variable fluorescence - qp photochemical quenching  相似文献   

9.
The relationship between the carotenoid zeaxanthin, formed by violaxanthin de-epoxidation, and nonphotochemical fluorescence quenching (qNP) in the light was investigated in leaves of Glycine max during a transient from dark to light in 2% O2, 0% CO2 at 100 to 200 micromoles of photons per square meter per second. (a) Up to a qNP (which can vary between 0 and 1) of about 0.7, the zeaxanthin content of leaves was linearly correlated with qNP as well as with the rate constant for radiationless energy dissipation in the antenna chlorophyll (kD). Beyond this point, at very high degrees of fluorescence quenching, only kD was directly proportional to the zeaxanthin content. (b) The relationship between zeaxanthin and kD was quantitatively similar for the rapidly relaxing quenching induced in 2% O2, 0% CO2 at 200 micromoles of photons per square meter per second and for the sustained quenching induced by long-term exposure of Nerium oleander to drought in high light (B Demmig, K Winter, A Krüger, F-C Czygan [1988] Plant Physiol 87: 17-24). These findings suggest that the same dissipation process may be induced by very different treatments and that this particular dissipation process can have widely different relaxation kinetics. (c) A rapid induction of strong nonphotochemical fluorescence quenching within about 1 minute was observed exclusively in leaves which already contained a background level of zeaxanthin.  相似文献   

10.
The function of photosystem (PS)II during desiccation and exposure to high photon flux density (PFD) was investigated via analysis of chlorophyll fluorescence in the desert resurrection plant Selaginella lepidophylla (Hook. and Grev.) Spring. Exposure of hydrated, physiologically competent stems to 2000 mol · m–2 · s–1 PFD caused significant reductions in both intrinsic fluorescence yield (FO) and photochemical efficiency of PSII (FV/FM) but recovery to pre-exposure values was rapid under low PFD. Desiccation under low PFD also affected fluorescence characteristics. Both FV/FM and photochemical fluorescence quenching remained high until about 40% relative water content and both then decreased rapidly as plants approached 0% relative water content. In contrast, the maximum fluorescence yield (FM) decreased and non-photochemical fluorescence quenching increased early during desiccation. In plants dried at high PFD, the decrease in FV/FM was accentuated and FO was reduced, however, fluorescence characteristics returned to near pre-exposure values after 24-h of rehydration and recovery at low PFD. Pretreatment of stems with dithiothreitol, an inhibitor of zeaxanthin synthesis, accelerated the decline in FV/FM and significantly increased FO relative to controls at 925 mol · m–2 · s–1 PFD, and the differences persisted over a 3-h low-PFD recovery period. Pretreatment with dithiothreitol also significantly decreased non-photochemical fluorescence quenching, increased the reduction state of QA, the primary electron acceptor of PSII, and prevented the synthesis of zeaxanthin relative to controls when stems were exposed to PFDs in excess of 250 mol · m–2 · s–1. These results indicate that a zeaxanthin-associated mechanism of photoprotection exists in this desert pteridophyte that may help to prevent photoinhibitory damage in the fully hydrated state and which may play an additional role in protecting PSII as thylakoid membranes undergo water loss.Abbreviations and Symbols DTT dithiothreitol - EPS epoxidation state - FO yield of instantaneous fluorescence at open PSII centers - FM maximum yield of fluorescence at closed PSII centers induced by saturating light - FM FM determined during actinic illumination - FV yield of variable fluorescence (FM-FO) - FV/FM photochemical efficiency of PSII - qP photochemical fluorescence quenching - qNP non-photochemical fluorescence quenching of Schreiber et al. (1986) - NPQ non-photochemical fluorescence quenching from the Stern-Volmer equation - PFD photon flux density - RWC relative water content This paper is based on research done while W.G.E. was on leave of absence at Duke University during the fall of 1990. We would like to thank Dan Yakir, John Skillman, Steve Grace, and Suchandra Balachandran and many others at Duke University for their help and input with this research. Dr. Barbara Demmig-Adams provided zeaxanthin for standard-curve purposes.  相似文献   

11.
W. Gsell  O. Kiirats  W. Hartung  U. Heber 《Planta》1989,177(3):367-376
The relationship between components of non-photochemical quenching of chlorophyll fluorescence yield (qNP) and dissipation of excessive excitation energy was determined in cotton leaves using concurrent measurements of fluorescence and gas-exchange at 2% and 20% O2 under a range of photon flux densities and CO2 pressures. A nearly stoichiometric relationship was obtained between dissipation of energy not used in photosynthetic CO2 fixation or photorespiration and qNP provided that a component, probably associated with state transitions, was not included in qNP. Although two distinct components of qNP were resolved on the basis of their relaxation kinetics, both components appear effective in energy dissipation. The photon yield of open photosystem-II reaction centers decreased linearly with increases in qNP, indicating that much of the energy dissipation occurs in the pigment bed. However, increases in qNP appear dependent on the redox state of these centers. The results are discussed in relation to current hypotheses of the molecular basis of non-radiative energy dissipation. It is concluded that determinations of qNP can provide a quantitative measure of the dissipation of excessive excitation energy if precautions are taken to ensure that the maximum fluorescence yield is measured under conditions that provide complete closure of the photosystem-II reaction centers. It is also concluded that such dissipation can prevent photoinhibitory damage in cotton leaves even under extreme conditions where as much as 80% of the excitation energy is excessive.Abbreviations and symbols F M, F O, F V, F S fluorescence yield when all PSII centers are closed, when all centers are open, FM-FO, at steady state in the light - PFD photon flux density (photon fluence rate) - P(CO2) sum of rates of CO2 uptake and dark respiration - P(ET) sum of P(CO2) and rate of oxygenation - PSI, PSII photosystem I, II - qNP, qP non-photochemical, photochemical fluorescence quenching - Q the acceptor for PSII - Q r/Q t the fraction of reduced Q or closed PSII centers - r/ t intrinsic photon yield of CO2 fixation in the absence of photorespiration of O2 evolution - a P(ET)/PFD (absorbed light) C.I.W. Publication No. 1016  相似文献   

12.
The effects of decreasing water potential (Ψ) on O2 evolution and fluorescence yield at room temperature and at 77 K were investigated using the lichen Lobaria pulmonaria. Changes in Ψ were created either by atmospheric desiccation or by osmotic dehydration, with either sucrose, sorbitol or NaCl as osmoticum. Independent of the method used to establish Ψ, similar inactivation patterns were obtained and were reversible after reincubation in pure water for 10 min. Our data indicate that exposure to increasing water stress acts at two levels. In the first phase, at ‘mild’ stress, i.e. at Ψ greater than ?13, ?16 and ?20 MPa for drying, NaCl and sucrose treatments, respectively, a progressive decline in O2 production and the fluorescence yield (ΔF/Fm′ and Fv/Fm) was correlated with increases in non-photochemical quenching (qN). At the same time the photochemical quenching (qp) changed only sligthly, indicating the absence of overreduction. The Fo level remained relatively constant in this first stage of water loss. A ΔpH mediated down regulation and a donor side limitation of photosystem (PS) II are discussed. When the water stress was severe, a further decrease in the fluorescence yield was observed and correlated with a considerable decrease in Fo (second phase). Kinetic analysis of the 77 K emission showed that osmotic stress and atmospheric desiccation possibly lead to an increased spillover from PS II to PS I. In addition, a strong negative effect of NaF on the recovery from dehydration was found. This may indicate a state transition mediated by the displacement/recoupling of light harvesting complex (LHC) II from/to PS II. The photoprotective role of spatial rearrangements of antenna complexes during desiccation is discussed.  相似文献   

13.
Previous work has shown that the maximum fluorescence yield from PS 2 of Synechococcus PCC 7942 occurs when the cells are at the CO2 compensation point. The addition of inorganic carbon (Ci), as CO2 or HCO3 , causes a lowering of the fluorescence yield due to both photochemical (qp) and non-photochemical (qN) quenching. In this paper, we characterize the qN that is induced by Ci addition to cells grown at high light intensities (500 mol photons m–2 s–1). The Ci-induced qN was considerably greater in these cells than in cells grown at low light intensities (50 mol photons m–2 s–1), when assayed at a white light (WL) intensity of 250 mol photons m–2 s–1. In high-light grown cells we measured qN values as high as 70%, while in low-light grown cells the qN was about 16%. The qN was relieved when cells regained the CO2 compensation point, when cells were illuminated by supplemental far-red light (FRL) absorbed mainly by PS 1, or when cells were illuminated with increased WL intensities. These characteristics indicate that the qN was not a form of energy quenching (qE). Supplemental FRL illumination caused significant enhancement of photosynthetic O2 evolution that could be correlated with the changes in qp and qN. The increases in qp induced by Ci addition represent increases in the effective quantum yield of PS 2 due to increased levels of oxidized QA. The increase in qN induced by Ci represents a decrease in PS 2 activity related to decreases in the potential quantum yield. The lack of diagnostic changes in the 77 K fluorescence emission spectrum argue against qN being related to classical state transitions, in which the decrease in potential quantum yield of PS 2 is due either to a decrease in absorption cross-section or by increased spill-over of excitation energy to PS 1. Both the Ci-induced qp (t 0.5<0.5 s) and qN (t 0.51.6 s) were rapidly relieved by the addition of DCMU. The two time constants give further support for two separate quenching mechanisms. We have thus characterized a novel form of qN in cyanobacteria, not related to state transitions or energy quenching, which is induced by the addition of Ci to cells at the CO2-compensation point.Abbreviations BTP- 1,3-bis[tris(hydroxymethyl)-methylaminopropane] - Chl- chlorophyll - Ci- inorganic carbon (CO2+HCO3 +CO3 2–) - DCMU- 3-(3,4-dichlorophenyl)-, 1-dimethylurea) - F- chlorophyll fluorescence measured at any time in the absence of a saturating flash - Fo- chlorophyll fluorescence with only the weak modulated measuring beam on - FM'- chlorophyll fluorescence during a saturating flash - FM- maximum chlorophyll fluorescence, measured in the presence of WL and FRL at the CO2-compensation point or in the presence of DCMU - FV- variable fluorescence (= FM'–F0) - FRL- supplemental illumination with far red light - MB- modulated measuring beam of the PAM fluorometer - MV- methyl viologen - PAM- pulse amplitude modulation - PFD- incident photon flux density - PS 1, 2- Photosystems 1 and 2 - QA- primary electron-accepting plastoquinione of PS 2 - qN- non-photochemical quenching of chlorophyll fluorescence - qp- photochemical quenching of chlorophyll fluorescence; rubisco-ribulose bisphosphate carboxylase/oxygenase - SF- saturating flash (600 ms duration) - WL- white light illumination  相似文献   

14.
Summary A convenient system for the rapid simultaneous measurement of both chlorophyll fluorescence quenching using a modulated light system, and of CO2, and water vapour exchange by leaves is described. The system was used in a study of the effects of water deficits on the photosynthesis by apple leaves (Malus x domestica Borkh.). Apple leaves were found to have low values of steady-state variable fluorescence, and the existence of significant fluorescence with open traps (Fo) quenching necessitated the measurement and use of a corrected Fo in the calculation of quenching components. Long-term water stress had a marked effect on both gas-exchange and chlorophyll fluorescence quenching. Non-photochemical quenching (qn) in particular was increased in water-stressed leaves, and it was particularly sensitive to incident radiation in such leaves. In contrast, rapid dehydration only affected gas exchange. Relaxation of qn quenching in the dark was slow, taking approximately 10 min for a 50% recovery, in well-watered and in draughted plants, and whether or not the plants had been exposed to high light.  相似文献   

15.
The mechanism of photoinhibition of photosystem II (PSII) was studied in intact leaf discs of Spinacia oleracea L. and detached leaves of Vigna unguiculata L. The leaf material was exposed to different photon flux densities (PFDs) for 100 min, while non-photochemical (qN) and photochemical quenching (qp) of chlorophyll fluorescence were monitored. The ‘energy’ and redox state of PSII were manipulated quite independently of the PFD by application of different temperatures (5–20° C), [CO2] and [O2] at different PFDs. A linear or curvilinear relationship between qp and photoinhibition of PSII was observed. When [CO2] and [O2] were both low (30 μl · l?1 and 2%, respectively), PSII was less susceptible at a given qp than at ambient or higher [CO2] and photoinhibition became only substantial when qp decreased below 0.3. When high levels of energy-dependent quenching (qE) (between 0.6 and 0.8) were reached, a further increase of the PFD or a further decrease of the metabolic demand for ATP and NADPH led to a shift from qE to photoinhibitory quenching (qI). This shift indicated that photoinhibition was preceded by down-regulation through light-induced acidification of the lumen. We propose that photoinhibition took place in the centers down-regulated by qE. The shift from qE to qI occurred concomitant with qP decreasing to zero. The results clearly show that photoinhibition does not primarily depend on the photon density in the antenna, but that photoinhibition depends on the energy state of the membrane in combination with the redox balance of PSII. The results are discussed with regard to the mechanism of photoinhibition of PSII, considering, in particular, effects of light-induced acidification on the donor side of PSII. Interestingly, cold-acclimation of spinach leaves did not significantly affect the relationship between qP, qE and photoinhibition of PSII at low temperature.  相似文献   

16.
We have compared the properties of a mutant of barley lacking Photosystem I (viridis-zb 63 ) with the corresponding wild type using modulated fluorescence measurements. The mutant showed two unexpected characteristics. Firstly, there was a slow decline in the fluorescence signal in the light which was dependent on the presence of O2 at concentrations similar to that in air; 2% O2 in N2 had no effect. The observed decline was mainly due to an increase in the non-photochemical quenching. Secondly, in the absence of O2, saturating light pulses caused a pronounced transient decrease in the fluorescence signal; a similar effect could also be observed in wild type plants when neither CO2 nor O2 was present.Abbreviations PPFD- photosynthetic photon flux density - qN- non-photochemical quenching of chlorophyll fluorescence - qp- photochemical quenching of chlorophyll fluorescence  相似文献   

17.
A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q N) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the “energy”-dependent (ΔpH-dependent) quenching (q E), the state-transition quenching (q T) and the photo/inhibitory quenching (q I) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q N, as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F V) is used to define both q N and its components. All definitions as well as the algorithms for analytical recognition of the q N components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q N components (q E, q T, q I) as well as the half-times of relaxation (τ1/2) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q N = q E + q T + q I. The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q N components from experimental data are also given.  相似文献   

18.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

19.
Summary The effect of high light levels on the two partners of a Pseudocyphellaria phycosymbiodeme (Pseudocyphellaria rufovirescens, with a green phycobiont, and P. murrayi with a blue-green phycobiont), which naturally occurs in deep shade, was examined and found to differ between the partners. Green algae can rapidly accumulate zeaxanthin, which we suggest is involved in photoprotection, through the xanthophyll cycle. Blue-green algae lack this cycle, and P. murrayi did not contain or form any zeaxanthin under our experimental conditions. Upon illumination, the thallus lobes with green algae exhibited strong nonphotochemical fluorescence quenching indicative of the radiationless dissipation of excess excitation energy, whereas thallus lobes with blue-green algae did not possess this capacity. The reduction state of photosystem II was higher by approximately 30% at each PFD beyond the light-limiting range in the blue-green algal partner compared with the green algal partner. Furthermore, a 2-h exposure to high light levels resulted in large reductions in the efficiency of photosynthetic energy conversion which were rapidly reversible in the lichen with green algae, but were long-lasting in the lichen with blue-green algae. Changes in fluorescence characteristics indicated that the cause of the depression in photosynthetic energy conversion was a reversible increase in radiationless dissipation in the green algal partner and photoinhibitory damage in the blue-green algal partner. These findings represent further evidence that zeaxanthin is involved in the photoprotective dissipation of excessive excitation energy in photosynthetic membranes. The difference in the capacity for rapid zeaxanthin formation between the two partners of the Pseudocyphellaria phycosymbiodeme may be important in the habitat selection of the two species when living separate from one another.Abbreviations F O yield of instantaneous fluorescence - F M maximum yield of fluorescence induced by pulses of saturating light - F V yield of variable fluorescence (F M -FO) induced by pulses of saturating light - PFD photon flux density (400–700 nm) - PS II photosystem II - q NP coefficient for nonphotochemical fluorescence quenching - q P (or 1-q P ) coefficient for photochemical fluorescence quenching  相似文献   

20.
The response of CO2 fixation to a sudden increase in ambient CO2 concentration has been investigated in intact leaf tissue from spinach (Spinacia oleracea) using a dual channel infrared gas analyzer. Simultaneous with these measurements, changes in fluorescence emission associated with a weak, modulated measuring beam were recorded. Application of brief (2-3 seconds) dark intervals enabled estimation of the dark fluorescence level (Fo) under both steady state and transient conditions. The degree of suppression of Fo level fluorescence in the light was strongly correlated with nonphotochemical quenching under all conditions. During CO2-induced oscillations in photosynthesis under 2% O2 the changes in nonphotochemical quenching anticipate changes in the rate of uptake of CO2. At such low levels of O2 and constant illumination, changes in the relative quantum efficiency of open photosystem II units were estimated as the ratio of the rate of CO2 uptake and the photochemical quenching coefficient. Under the same conditions the relative quantum efficiency of photosystem II was found to vary inversely with the degree of nonphotochemical quenching. The relationship between changes in the rate of CO2 uptake: photochemical quenching coefficient and nonphotochemical quenching was altered somewhat when the same experiment was conducted under 20% O2. The results suggest that electron transport coupled to reduction of O2 occurs to varying degrees with time during oscillations, especially when ambient O2 concentrations are high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号