首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H H Schmidt  R M Smith  M Nakane  F Murad 《Biochemistry》1992,31(12):3243-3249
NO synthase (NOS; EC 1.14.23) catalyzes the conversion of L-arginine into L-citrulline and a guanylyl cyclase-activating factor (GAF) that is chemically identical with nitric oxide or a nitric oxide-releasing compound (NO). Similar to the other isozymes of NOS that have been characterized to date, the soluble and Ca2+/calmodulin-regulated type I from rat cerebellum (homodimer of 160-kDa subunits) is dependent on NADPH for catalytic activity. The enzyme also possesses NADPH diaphorase activity in the presence of the electron acceptor nitroblue tetrazolium (NBT). We investigated the requirements of NOS and its content of the proposed additional cofactors tetrahydrobiopterin (H4biopterin) and flavins, further characterized the NADPH diaphorase activity, and quantified the NADPH binding site(s). Purified NOS type I Ca2+/calmodulin-independently bound the [32P]2',3'-dialdehyde analogue of NADPH (dNADPH), which, at near Km concentrations during 3-min incubations was utilized as a substrate and at higher concentrations or after prolonged incubations and cross-linking inhibited NOS activity. The NADPH diaphorase activity was Ca2+/calmodulin-independent, required higher NADPH concentrations than NOS activity, and was affected by dNADPH to a lesser degree. Divalent cations interfered with the diaphorase assay. Per dimer, native NOS contained about 1 mol each of H4biopterin, FAD, and FMN, classifying it as a biopteroflavoprotein, and incorporated 1 mol of dNADPH. No dihydrobiopterin (H2biopterin), biopterin, or riboflavin was detected. These findings suggest that NOS may share cofactors between two identical subunits via high-affinity binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Nitric oxide (NO) is a multifunctional molecule involved in numerous physiological processes in plants. In this study, we investigate the spatiotemporal changes in NO levels and endogenous NO‐generating system in auxin‐induced adventitious root formation. We demonstrate that NO mediates the auxin response, leading to adventitious root formation. Treatment of explants with the auxin indole‐3‐butyric acid (IBA) plus the NO donor sodium nitroprusside (SNP) together resulted in an increased number of adventitious roots compared with explants treated with SNP or IBA alone. The action of IBA was significantly reduced by the specific NO scavenger, 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (c‐PTIO), and the nitric oxide synthase (NOS, enzyme commission 1.14.13.39) inhibitor, NG‐nitro‐l ‐arg‐methyl ester (l ‐NAME). Detection of endogenous NO by the specific probe 4,5‐diaminofluorescein diacetate and survey of NADPH–diaphorase activity (commonly employed as a marker for NOS activity) by histochemical staining revealed that during adventitious root formation, NO and NADPH–diaphorase signals were specifically located in the adventitious root primordia in the basal 2‐mm region (as zone I) of both control and IBA‐treated explants. With the development of root primordia, NO and NADPH–diaphorase signals increased gradually and were mainly distributed in the root meristem. Endogenous NO and NADPH–diaphorase activity showed overall similarities in their tissue localization. Distribution of NO and NADPH–diaphorase activity similar to that in zone I were also observed in the basal 2–4‐mm region (zone II) of IBA‐treated explants, but neither NO nor NADPH–diaphorase signals were detected in this region of the control explants. l ‐NAME and c‐PTIO inhibited the formation of adventitious roots induced by IBA and reduced both NADPH–diaphorase staining and NO fluorescence. These results show the dynamic distribution of endogenous NO in the developing root primordia and demonstrate that NO plays a vital role in IBA‐induced adventitious rooting. Also, the production of NO in this process may be catalyzed by a NOS‐like enzyme.  相似文献   

3.
We colocalized nitric oxide synthase (NOS) activity in epithelial cells that surround the salivary gland duct in female Dermacentor variabilis with NADPH diaphorase histochemistry and immunohistochemistry using a polyclonal anti-endothelial NOS. Using size-exclusion chromatography, a fraction with a molecular mass of about 185 kDa that had diaphorase activity was eluted from tick salivary gland homogenate. This fraction converted arginine to citrulline with the production of nitric oxide (NO), which was detected by using electron spin resonance spectroscopy. The complete activity of the diaphorase fraction was dependent on NADPH, FAD, tetrahydrobiopterin, calmodulin, (CaM), and Ca(2+), but was not dependent on dithiothreitol. The arginine analog N(G)-monomethyl-L-arginine inhibited the activity of this fraction. NO and arginine activated soluble guanylate cyclase to produce cGMP in dopamine-stimulated isolated salivary glands. Dopamine-stimulated isolated salivary glands treated with tick saline containing either EDTA, the NOS inhibitor N(G)-nitro-L-arginine methyl ester, or the calcium/CaM binding inhibitor W-7 showed no increase in cGMP. The NO donor sodium nitroprusside significantly increased cGMP levels in unstimulated isolated salivary glands. A possible function for NO in salivation by this ixodid tick is discussed.  相似文献   

4.
NADPH diaphorase histochemistry has been used extensively for detecting nitric oxide synthase (NOS) activity in various cell types including neuronal cell bodies, vascular endothelium, cells of the immune system and epithelial cells. The use of the diaphorase technique in cell cultures to study the induction of NOS has not been investigated. In this paper we report the use of diaphorase histochemistry as a good marker for the detection of NOS activity in cultured cells. This technique can be used in conjunction with other established techniques to determine the presence and activity of NOS in cultured cells.  相似文献   

5.
 The presence of NADPH diaphorase staining was compared with the immunohistochemical localization of four NADPH-dependent enzymes – neuronal (type I), inducible (type II), and endothelial (type III) nitric oxide synthase (NOS) and cytochrome P450 reductase. Cell types that were immunoreactive for the NADPH-dependent enzymes were also stained for NADPH diaphorase, suggesting that endothelial and neuronal NOS and cytochrome P450 reductase all show NADPH diaphorase activity in formaldehyde-fixed tissue. However, in some tissues, the presence of NADPH diaphorase staining did not coincide with the presence of any of the NADPH-dependent enzymes we examined. In vascular endothelial cells, the punctate pattern of staining observed with NADPH diaphorase histochemistry was identical to that seen following immunohistochemistry using antibodies to endothelial NOS. In enteric and pancreatic neurons and in skeletal muscle, the presence of NADPH diaphorase staining correlated with the presence of neuronal NOS. In the liver, sebaceous glands of the skin, ciliated epithelium, and a subpopulation of the cells in the subserosal glands of the trachea, zona glomerulosa of the adrenal cortex, and epithelial cells of the lacrimal and salivary glands, the presence of NADPH diaphorase staining coincided with the presence of cytochrome P450 reductase immunoreactivity. In epithelial cells of the renal tubules and zona fasciculata and zona reticularis of the adrenal cortex, NADPH diaphorase staining was observed that did not coincide with the presence of any of the enzymes. Inducible NOS was not observed in any tissue. Thus, while tissues that demonstrate immunoreactivity for neuronal and endothelial NOS also stain positively for NADPH diaphorase activity, the presence of NADPH diaphorase staining does not reliably or specifically indicate the presence of one or more NOS isoforms. Accepted: 2 September 1996  相似文献   

6.
Diaphorase was studied as a possible oxidoreductase participating in NO production from some vasorelaxants. In the presence of NADH or NADPH, diaphorase can convert selected NO donors, glycerol trinitrate (GTN) and formaldoxime (FAL) to nitrites and nitrates with NO as an intermediate. This activity of diaphorase was inhibited by diphenyleneiodonium (DPI) (inhibitor of some NADPH-dependent flavoprotein oxidoreductases), while it remained uninhibited by NG-nitro-L-arginine methyl ester (inhibitor of NO synthase) 7-Ethoxyresorufin (inhibitor of cytochrome P-450 1A1 and cytochrome P-450 NADPH-dependent reductase) inhibited the conversion of GTN only. Existence of NO as an intermediate of the reaction was supported by results of electron paramagnetic resonance spectroscopy. In addition to its ability to affect the above mentioned NO donors, diaphorase was able to reduce 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) and thus to eliminate its NO scavenging effect. This activity of diaphorase could also be inhibited by DPI. The reaction of diaphorase with GTN and PTIO was not affected by superoxide dismutase (SOD) or catalase. Reaction of FAL with diaphorase was lowered with SOD by 38 % indicating the partial participation of superoxide anion probably generated by the reaction of diaphorase with NADH or NADPH. Catalase had no effect. Diaphorase could apparently be one of the enzymes participating in the metabolism of studied NO donors to NO. The easy reduction and consequent elimination of PTIO by diaphorase could affect its use as an NO scavenger in biological tissues.  相似文献   

7.
门脉高压兔胃壁的NADPH黄递酶组织化学观察   总被引:1,自引:0,他引:1  
已证实还原型尼克酰胺腺嘌呤二核苷酸(NADPH)黄递酶即是一氧化氮合酶,因而可应用简便的NADPH黄递酶哗学染色法来观察机体组织一氧化氮合酶的存在与分布,从而间接了解NO的合成。我们用此法观察了站静脉部分结扎的门脉高压兔胃壁内一氧化氮合酶的分布,发现其胃壁内血管内皮细胞与神经丛神经元及神经纤维一氧化氮合酶活性较正常兔明显增加。结果提示,一氧化氮可能参与了门脉高压胃粘膜病的发生。  相似文献   

8.
Renal ischemia in humans and in experimental animals is associated with a complex and possibly interrelated series of events. In this study, we have investigated the glomerular nitric oxide (NO) production after renal ischemia. Unilateral or bilateral renal ischemia was induced in Wistar rats by clamping one or both renal arteries. NO production was assessed by measuring glomerular production of nitrite, a stable end product of NO catabolism, and NO-dependent glomerular cGMP production and by assessing the glomerular NADPH diaphorase (ND) activity, an enzymatic activity that colocalizes with NO-synthesis activity. Furthermore, we determined the isoform of NO synthase (NOS) implicated in NO synthesis by Western blot and immunohistochemistry. Glomeruli from rats with bilateral ischemia showed elevated glomerular nitrite and cGMP production. Besides, glomeruli from this group of rats showed an increased ND activity, whereas glomeruli from the ischemic and nonischemic rats with unilateral ischemia did not show this increase in nitrite, cGMP, and ND activity. In addition, glomeruli from ischemic kidneys showed an increased expression of endothelial NOS without changes in the inducible isoform. Addition of L-NAME in the drinking water induced a higher increase in the severity of the functional and structural damage in rats with bilateral ischemia than in rats with unilateral ischemia and in sham-operated animals. We can conclude that after renal ischemia, there is an increased glomerular NO synthesis subsequent to an activation of endothelial NOS that plays a protective role in the renal damage induced by ischemia and reperfusion.  相似文献   

9.
Neuronal nitric oxide synthase (NOS), an enzyme capable of synthesizing nitric oxide, appears to be identical to neuronal NADPH diaphorase. The correlation was examined between NOS immunoreactivity and NADPH diaphorase staining in neurons of the ileum and colon of the guinea-pig. There was a one-to-one correlation between NOS immunoreactivity and NADPH diaphorase staining in all neurons examined; even the relative staining intensities obtained were similar with each technique. To determine whether pharmacological methods could be employed to demonstrate that NADPH diaphorase staining was due to the presence of NOS, tissue was pre-treated with NG-nitro-L-arginine, a NOS inhibitor, or L-arginine, a natural substrate of NOS. In these experiments on unfixed tissue, it was necessary to use dimethyl thiazolyl tetrazolium instead of nitroblue tetrazolium as the substrate for the NADPH diaphorase histochemical reaction. Neither treatment caused a significant decrease in the level of NADPH diaphorase staining, implying that arginine and NADPH interact at different sites on the enzyme.  相似文献   

10.
为了探讨补肾益气活血方对胎儿宫内生长迟缓(IUGR)胎盘组织一氧化氮(NO)生成的影响,本文对正常孕妇、IUGR患者及补肾益气活血中药治疗后患者各12例,采用NADPH黄递酶法研究了一氧化氮合酶(NOS)在胎盘组织的分布,应用化学发光法测定胎盘组织NOS活性。结果表明:正常孕妇胎盘绒毛合体滋养层细胞NOS呈强阳性反应,绒毛干血管壁呈阳性反应,终末绒毛毛细血管壁呈阴性反应;IUGR患者绒毛合体滋养层细胞和绒毛干血管壁NOS染色明显变浅,而终末绒毛毛细血管壁呈阳性反应;中药治疗后合体滋养层细胞和绒毛干血管壁NOS染色明显加深。NOS活性测定中药组较IUGR未治疗组显著增高,与正常孕妇相比其差异无显著性。结果提示:NO参与IUGR的病理生理过程,补肾益气活血方通过增强NOS活性促进胎盘组织NO的产生  相似文献   

11.
Summary Neuronal nitric oxide synthase (NOS), an enzyme capable of synthesizing nitric oxide, appears to be identical to neuronal NADPH diaphorase. The correlation was examined between NOS immunoreactivity and NADPH diaphorase staining in neurons of the ileum and colon of the guinea-pig. There was a one-to-one correlation between NOS immunoreactivity and NADPH diaphorase staining in all neurons examined; even the relative staining intensities obtained were similar with each technique. To determine whether pharmacological methods could be employed to demonstrate that NADPH diaphorase staining was due to the presence of NOS, tissue was pre-treated with NG-nitro-l-arginine, a NOS inhibitor, or l-arginine, a natural substrate of NOS. In these experiments on unfixed tissue, it was necessary to use dimethyl thiazolyl tetrazolium instead of nitroblue tetrazolium as the substrate for the NADPH diaphorase histochemical reaction. Neither treatment caused a significant decrease in the level of NADPH diaphorase staining, implying that arginine and NADPH interact at different sites on the enzyme.  相似文献   

12.
用还原型辅酶Ⅱ黄递酶组织化学和一氧化氮合酶(NOS)免疫细胞化学技术研究了成年爪蛙(Xenopuslaevis)鼻粘膜NOS的阳性结构。嗅上皮中嗅感觉神经元和支持细胞,以及固有层中的神经束、血管和粘膜下腺均呈还原型辅酶Ⅱ黄递酶阳性染色。在嗅上皮中,未见Ⅰ型或Ⅱ型NOS抗体免疫反应阳性结构,但鼻内侧窦和内侧窦口顶嗅上皮中的嗅感觉神经元见有Ⅲ型NOS强免疫反应。在固有层中,Ⅰ型或Ⅲ型NOS免疫反应性存在于神经束和血管中,未见于粘膜下腺的腺泡中。结果表明,不同异型的NOS存在于爪蛙鼻粘膜中,提示一氧化氮可能参与爪蛙的化学感觉活动。  相似文献   

13.
Juvenile hormone synthesis by corpora allata is regulated partly by allatostatin containing nerves from the brain that innervate the corpora cardiaca and the corpora allata. To investigate whether NO also participates in the regulation of juvenile hormone synthesis, antibody against NO synthase and the histochemical test for NADPH diaphorase activity, a marker for NO synthase, were applied to the corpora cardiaca-corpora allata of Diploptera punctata. Strong NADPH diaphorase activity occurred in corpus allatum cells but not in nerve fibers in the corpora allata or corpora cardiaca. In contrast, NO immunoreactivity occurred in nerves in the corpora cardiaca but not within the corpora allata. NO and allatostatin were not colocalized. NO synthase and NADPH diaphorase activity were localized in similar areas of the subesophageal ganglion and cells in the pars intercerebralis of the brain. Positive correlation of the quantity of NADPH diaphorase activity with juvenile hormone synthesis during the gonadotrophic cycle and lack of such correlation in subesophageal ganglia suggest that NADPH diaphorase activity reflects the necessity of NADPH in the pathway of juvenile hormone synthesis. These data suggest that NO is unlikely to play a significant role in the regulation of the corpora allata.  相似文献   

14.
The free radical nitric oxide (NO) has emerged as a simple and unique signalling molecule that can serve as neurotransmitter, paracrine substance or hormone. NO is a gas, formed by various neuronal cells, both centrally and peripherally. NO regulates cyclic GMP synthesis. The production of NO can be detected using the NADPH diaphorase (NADPH-d) histochemical stain for nitric oxide synthase (NOS). NOS was detected in two parasitic flatworms, Diphyllobothrium dendriticum and Hymenolepis diminuta, and two free-living flatworms, Planaria torva and Girardia tigrina. The staining for NOS was very strong in the nervous system of both parasitic worms. The main nerve cords, the transverse ring commmissures, nerves in association with the musculature, especially the cirrus musculature and sensory nerve endings showed NADPH-d staining. The NADPH-d staining in the free-living flatworms was much weaker. Still NOS activity was found in the neuropile of the brain and in association with the pharynx musculature. The demonstration of NOS in flatworms, indicates that NO is an old signal molecule in evolutionary terms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The presence of Ca(2+)-dependent, heat-stress-activated nitric oxide synthase (NOS) activity in peculiarly shaped, fusiform, and dendritic sponge cells is described for the first time. The NOS activity was evidenced evaluating the conversion of radioactive citrulline from [(14)C]arginine in intact cells from two different species that are phylogenetically unrelated in the class of Demospongiae: Axinella polypoides and Petrosia ficiformis. The production of nitrogen monoxide (NO) was confirmed by electron paramagnetic resonance analysis, and the histochemistry technique of NADPH diaphorase showed a specific localization of NOS activity in a particular network of dendritic cells in the sponge parenchyma. Sponges are the most primitive metazoan group; their evolution dates back 600 million years. The presence of environmental stress-activated NOS activity in these organisms may prove to be the most ancient NO-dependent signaling network in the animal kingdom.  相似文献   

16.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

17.
18.
The subcellular appearance of NADPH diaphorase activity in different rat skeletal muscles has been analyzed. Both a sarcolemma-associated as well as a non-sarcolemma-associated NADPH diaphorase-dependent generation of formazan was observed. The sarcolemma-associated NADPH diaphorase staining appeared regularly in two manifestations: one observed in longitudinal sections as dotted costameres at the cell surface which accordingly appeared in transversal sections as rings surrounding the myofibre surface. At this site, nitric oxide synthase (NOS)-1 was located. The second sarcolemma-associated site of NADPH diaphorase staining was found as bundles of longitudinal-orientated stripes of hitherto unidentified origin. The non-sarcolemma-associated production of formazan was likewise manifested at two sites: the first was found regularly in longitudinal sections as intense sarcomere-like striations occurring parallel to the I-bands and indicating mitochondria. The second non-sarcolemma-associated NADPH diaphorase staining was realized as fine longitudinal filaments of variable occurrence connecting the mitochondria and presumably belonging to the sarcoplasmic reticulum. Attempts to identify single NADPH diaphorase(s) existing in skeletal muscles by incubation with specific inhibitors failed but showed the presence of two different subpopulations of NADPH diaphorases in myofibres: a urea-resistant fraction in the sarcolemma region containing NOS-1 and a non-sarcolemma-associated, urea-sensitive fraction depleted of NOS-1.  相似文献   

19.
The human neuroblastoma cell line SK-N-BE, after incubation with 10 μM retinoic acid (RA) or 20 nM phorbol 12-myristate 13-acetate (PMA), underwent biochemical and morphological signs of differentiation within 10–14 days. In parallel, SK-N-BE cells produced significantly higher amounts of nitric oxide (NO) in comparison with controls, as assessed by the measurement of nitrite and nitrate in the culture supernatant and of NO synthase (NOS) activity in the cell lysates (measured as ability to convert [3H]arginine into [3H]citrulline and as NADPH diaphorase activity). Nitrite/nitrate production was abolished by adding the NO scavenger hemoglobin in the culture medium and was inhibited by aminoguanidine (AG, a selective inhibitor of the inducible NOS isoform) but not by the less selective inhibitor NG-nitro-L -arginine methylester (NAME). Western blotting experiments with monoclonal antibodies against the ncNOS and iNOS isoforms suggest that RA-elicited NOS activation is not attributable to an increased expression of the protein. NAME and AG were not able to revert inhibition of proliferation induced by RA, and the NO donor sodium nitroprusside did not mimic the effect of RA and PMA. These data indicate that increased NO synthesis does not mediate RA- or PMA-induced differentiation but may be an additional marker of differentiation into sympathetic-like neuronal cells. J. Cell. Physiol. 174:99–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on optic nerve regeneration in the goldfish ( Carassius auratus ). NADPH diaphorase staining revealed that nitric oxide synthase (NOS) activity was up-regulated primarily in the retinal ganglion cells (RGCs) 5–40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and protein also increased in the RGCs alone during this period. This period (5–40 days) overlapped with the process of axonal elongation during regeneration of the goldfish optic nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and small interfering RNA, specific for the nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intra-ocular dibutyryl cGMP promoted the axonal regeneration from injured RGCs in vivo . None of these molecules had an effect on cell death/survival in this culture system. This is the first report showing that NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in fish CNS neurons after nerve lesioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号