首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli RrmJ gene product has recently been shown to be the 23S rRNA:U2552 specific 2'-O-ribose methyltransferase (MTase) (RrmJ). Its structure has been solved and refined to 1.5 A resolution, demonstrating conservation of the three-dimensional fold and key catalytic side chains with the vaccinia virus VP39 protein, which functions as an mRNA 5'm(7)G-cap-N-specific 2'-O-ribose MTase. Using the amino acid sequence of RrmJ as an initial probe in an iterative search of sequence databases, we identified a homologous domain in the sequence of the L protein of non-segmented, negative-sense, single-stranded RNA viruses. The plausibility of the prediction was confirmed by homology modeling and checking whether important residues at substrate/ligand-binding sites were conserved. The predicted structural compatibility and the conservation of the active site between the novel putative MTase domain and genuine 2'-O-ribose MTases, together with the available results of biochemical studies, strongly suggest that this domain is a 5'm(7)G-cap-N-specific 2'-O-ribose MTase (i.e. the cap 1 MTase). Evolutionary relationships between these proteins are also discussed.  相似文献   

2.
The heat shock protein RrmJ (FtsJ), highly conserved from eubacteria to eukarya, is responsible for the 2'-O-ribose methylation of the universally conserved base U2552 in the A-loop of the 23 S rRNA. Absence of this methylation, which occurs late in the maturation process of the ribosome, appears to cause the destabilization and premature dissociation of the 50 S ribosomal subunit. To understand the mechanism of 2'-O-ribose methyltransfer reactions, we characterized the enzymatic parameters of RrmJ and conducted site-specific mutagenesis of RrmJ. A structure based sequence alignment with VP39, a structurally related 2'-O-methyltransferase from vaccinia virus, guided our mutagenesis studies. We analyzed the function of our RrmJ mutants in vivo and characterized the methyltransfer reaction of the purified proteins in vitro. The active site of RrmJ appears to be formed by a catalytic triad consisting of two lysine residues, Lys-38 and Lys-164, and the negatively charged residue Asp-124. Another highly conserved residue, Glu-199, that is present in the active site of RrmJ and VP39 appears to play only a minor role in the methyltransfer reaction in vivo. Based on these results, a reaction mechanism for the methyltransfer activity of RrmJ is proposed.  相似文献   

3.
The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2'-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2'-O position of the ribose.  相似文献   

4.
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation.  相似文献   

5.
6.
A genetic selection method, the P22 challenge-phage assay, was used to characterize DNA binding in vivo by the prokaryotic beta class [N:6-adenine] DNA methyltransferase M.RSR:I. M.RSR:I mutants with altered binding affinities in vivo were isolated. Unlike the wild-type enzyme, a catalytically compromised mutant, M.RSR:I (L72P), demonstrated site-specific DNA binding in vivo. The L72P mutation is located near the highly conserved catalytic motif IV, DPPY (residues 65-68). A double mutant, M.RSR:I (L72P/D173A), showed less binding in vivo than did M.RSR:I (L72P). Thus, introduction of the D173A mutation deleteriously affected DNA binding. D173 is located in the putative target recognition domain (TRD) of the enzyme. Sequence alignment analyses of several beta class MTases revealed a TRD sequence element that contains the D173 residue. Phylogenetic analysis suggested that divergence in the amino acid sequences of these methyltransferases correlated with differences in their DNA target recognition sequences. Furthermore, MTases of other classes (alpha and gamma) having the same DNA recognition sequence as the beta class MTases share related regions of amino acid sequences in their TRDs.  相似文献   

7.
The amino acid sequence of the RNA 2'-O-ribose methyltranserase RrmJ was used as a probe for detecting putative homologs through iterative searches of genomic databases. We found a previously unannotated YgdE open reading frame (ORF) in the genome sequences of Escherichia coli and other gamma-Proteobacteria, which shares key features with RrmJ, despite the mutual sequence similarity of these proteins is relatively low. The predicted structural compatibility and the conservation of all functionally important residues between RrmJ and YgdE strongly suggests that the newly identified methyltranserase also modifies 2'-OH groups of ribose. The N-terminal region of YgdE, which has no counterpart in RrmJ, is predicted to form an independent domain, possibly involved in target recognition.  相似文献   

8.
The integrase family of site-specific recombinases catalyzes conservative rearrangements between defined segments of DNA. A highly conserved tetrad (RHRY) of catalytic residues is essential for this process. This tetrad is dispersed in two motifs in the linear sequence, but is configured appropriately in the catalytic pocket to execute the strand cleavage and rejoining reactions. A third conserved motif has been identified in the Xer subgroup of the integrase family. Mutational analysis of 12 conserved residues in this motif in the XerD protein from Salmonella typhimurium led to the identification of an essential fifth catalytic residue (lysine 172) which is implicated in strand cleavage or exchange. This lysine residue occupies part of the turn of an antiparallel beta-hairpin which forms one side of the catalytic cleft in XerD, and is found at similar positions among evolutionarily diverse integrase family members. Related antiparallel beta-hairpins are present in eucaryotic type IB topoisomerase enzymes which also contain a critical lysine residue in the turn of the hairpin. In both the integrase family and eucaryotic type IB topoisomerases, the catalytic lysine residues are in close contact with the substrates and may play similar roles in influencing the reactivity of the phosphotyrosine intermediates formed during reactions catalyzed by both enzymes.  相似文献   

9.
10.
The alpha-amylase family is a large group of starch processing enzymes [Svensson, B. (1994) Plant Mol. Biol. 25, 141-157]. It is characterized by four short sequence motifs that contain the seven fully conserved amino acid residues in this family: two catalytic carboxylic acid residues and four substrate binding residues. The seventh conserved residue (Asp135) has no direct interactions with either substrates or products, but it is hydrogen-bonded to Arg227, which does bind the substrate in the catalytic site. Using cyclodextrin glycosyltransferase as an example, this paper provides for the first time definite biochemical and structural evidence that Asp135 is required for the proper conformation of several catalytic site residues and therefore for activity.  相似文献   

11.
The characteristic oxidation or reduction reaction mechanisms of short‐chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp‐Ser‐Tyr‐Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118‐Ser146‐Thr159‐Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH‐complexed Q9HYA2 were determined at 2.3 Å resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2–NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.  相似文献   

12.
Two adjacent genes encoding DNA methyltransferases (MTases) of Neisseria gonorrhoeae MS11, an active N4-cytosine specific M. NgoMXV and an inactive 5-cytosine type M. NgoMorf2P, were cloned into Escherichia coli and sequenced. We analyzed the deduced amino acid sequence of both gene products and localized conserved regions characteristic for DNA MTases. Structure prediction, threading-derived alignments, and comparison with the common fold for DNA MTases allowed for construction of super-secondary and tertiary models for M.NgoMorf2P and M.NgoMXV, respectively. These models helped in identification of amino acids and structural elements essential for function of both enzymes. The implications of this putative structural model on the catalytic mechanism of M.NgoMXV and its possible relation to the common ancestor of modern DNA amino-MTases are also discussed.  相似文献   

13.
In yeast, guide snoRNAs have been assigned to 51 of the 55 rRNA ribose methylation sites. LSU-Um2918 is one of the four remaining positions. This residue is highly conserved and located in the peptidyl transferase center of the ribosome. The equivalent position on the E. coli 23S rRNA is methylated by FtsJ/RrmJ which has three yeast homologs: Spb1, involved in biogenesis of LSU; Trm7, a tRNA methyltransferase; and Mrm2, a mitochondrial 21S rRNA methyltransferase. We demonstrate that a point mutation in the Ado-Met binding site of Spb1p affects cell growth but does not abolish methylation of U2918. When this mutation is combined with disruption of snR52 (a snoRNA C/D), cell growth is severely impaired and U2918 is no longer methylated. In vitro, Spb1p is able to methylate U2918 on 60S subunits. Our results reveal the importance of this methylation for which two mechanisms coexist: a site-specific methyltransferase (Spb1p) and a snoRNA-dependent mechanism.  相似文献   

14.
Previous comparative studies revealed close similarity among various groups of S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases (MTases), indicating their common evolutionary origin. We present evidence for a remarkable similarity between the sequence and predicted structure of HemK (a widespread family of putative proteins encoded in genomes from bacteria to humans) and the catalytic domain of the gamma-subfamily of adenine-specific DNA MTases (N6mA MTases). We predict the structure and function of the putative catalytic domain of HemK proteins and speculate that the target-recognizing function may be conferred by the N-terminal variable region.  相似文献   

15.
In Archaea, fibrillarin and Nop5p form the core complex of box C/D small ribonucleoprotein particles, which are responsible for site-specific 2'-hydroxyl methylation of ribosomal and transfer RNAs. Fibrillarin has a conserved methyltransferase fold and employs S-adenosyl-l-methionine (AdoMet) as the cofactor in methyl transfer reactions. Comparison between recently determined crystal structures of free fibrillarin and fibrillarin-Nop5p-AdoMet tertiary complex revealed large conformational differences at the cofactor-binding site in fibrillarin. To identify the structural elements responsible for these large conformational differences, we refined a crystal structure of Archaeoglobus fulgidus fibrillarin-Nop5p binary complex at 3.5 A. This structure exhibited a pre-formed backbone geometry at the cofactor binding site similar to that when the cofactor is bound, suggesting that binding of Nop5p alone to fibrillarin is sufficient to stabilize the AdoMet-binding pocket. Calorimetry studies of cofactor binding to fibrillarin alone and to fibrillarin-Nop5p binary complex provided further support for this role of Nop5p. Mutagenesis and thermodynamic data showed that a cation-pi bridge formed between Tyr-89 of fibrillarin and Arg-169 of Nop5p, although dispensable for in vitro methylation activity, could partially account for the enhanced binding of cofactor to fibrillarin by Nop5p. Finally, assessment of cofactor-binding thermodynamics and catalytic activities of enzyme mutants identified three additional fibrillarin residues (Thr-70, Glu-88, and Asp-133) to be important for cofactor binding and for catalysis.  相似文献   

16.
Relationships within the aldehyde dehydrogenase extended family   总被引:2,自引:0,他引:2       下载免费PDF全文
One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.  相似文献   

17.
RlmM (YgdE) catalyzes the S-adenosyl methionine (AdoMet)-dependent 2′O methylation of C2498 in 23S ribosomal RNA (rRNA) of Escherichia coli. Previous experiments have shown that RlmM is active on 23S rRNA from an RlmM knockout strain but not on mature 50S subunits from the same strain. Here, we demonstrate RlmM methyltransferase (MTase) activity on in vitro transcribed 23S rRNA and its domain V. We have solved crystal structures of E. coli RlmM at 1.9 Å resolution and of an RlmM–AdoMet complex at 2.6 Å resolution. RlmM consists of an N-terminal THUMP domain and a C-terminal catalytic Rossmann-like fold MTase domain in a novel arrangement. The catalytic domain of RlmM is closely related to YiiB, TlyA and fibrillarins, with the second K of the catalytic tetrad KDKE shifted by two residues at the C-terminal end of a beta strand compared with most 2′O MTases. The AdoMet-binding site is open and shallow, suggesting that RNA substrate binding may be required to form a conformation needed for catalysis. A continuous surface of conserved positive charge indicates that RlmM uses one side of the two domains and the inter-domain linker to recognize its RNA substrate.  相似文献   

18.
Yue QK  Kass IJ  Sampson NS  Vrielink A 《Biochemistry》1999,38(14):4277-4286
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols.  相似文献   

19.
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.  相似文献   

20.
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号