首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The most important target protein for many anesthetics, including volatile and steroid anesthetics, appears to be the type A gamma-amino butyric acid receptor (GABA(A)R), yet direct binding remains to be demonstrated. Hypotheses of lipid-mediated anesthesia suggest that lipid bilayer properties are changed by anesthetics and that this in turn affects the functions of proteins. While other data could equally well support direct or lipid-mediated action, enantiomeric specificity displayed by some anesthetics is not reflected in their interactions with lipids. In the present study, we studied the effects of two pairs of anesthetic steroid enantiomers on bilayers of several compositions, measuring potentially relevant physical properties. For one of the pairs, allopregnanolone and ent-allopregnanolone, the natural enantiomer is 300% more efficacious as an anesthetic, while for the other, pregnanolone and ent-pregnanolone, there is little difference in anesthetic potency. For each enantiomer pair, we could find no differences. This strongly favors the view that the effects of these anesthetics on lipid bilayers are not relevant for the main features of anesthesia. These steroids also provide tools to distinguish in general the direct binding of steroids to proteins from lipid-mediated effects.  相似文献   

2.
The most important target protein for many anesthetics, including volatile and steroid anesthetics, appears to be the type A γ-amino butyric acid receptor (GABAAR), yet direct binding remains to be demonstrated. Hypotheses of lipid-mediated anesthesia suggest that lipid bilayer properties are changed by anesthetics and that this in turn affects the functions of proteins. While other data could equally well support direct or lipid-mediated action, enantiomeric specificity displayed by some anesthetics is not reflected in their interactions with lipids. In the present study, we studied the effects of two pairs of anesthetic steroid enantiomers on bilayers of several compositions, measuring potentially relevant physical properties. For one of the pairs, allopregnanolone and ent-allopregnanolone, the natural enantiomer is 300% more efficacious as an anesthetic, while for the other, pregnanolone and ent-pregnanolone, there is little difference in anesthetic potency. For each enantiomer pair, we could find no differences. This strongly favors the view that the effects of these anesthetics on lipid bilayers are not relevant for the main features of anesthesia. These steroids also provide tools to distinguish in general the direct binding of steroids to proteins from lipid-mediated effects.  相似文献   

3.
Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4-3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism.  相似文献   

4.
The structural features of volatile anesthetic binding sites on proteins are being examined with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. Previous work has suggested that introducing a cavity into the hydrophobic core improves anesthetic binding affinity. The more polarizable methionine side chain was substituted for a leucine, in an attempt to enhance the dispersion forces between the ligand and the protein. The resulting bundle variant has an improved affinity (K(d) = 0.20 +/- 0.01 mM) for halothane binding, compared with the leucine-containing bundle (K(d) = 0.69 +/- 0.06 mM). Photoaffinity labeling with (14)C-halothane reveals preferential labeling of the W15 residue in both peptides, supporting the view that fluorescence quenching by bound anesthetic reports both the binding energetics and the location of the ligand in the hydrophobic core. The rates of amide hydrogen exchange were similar for the two bundles, suggesting that differences in binding affinity were not due to changes in protein stability. Binding of halothane to both four-alpha-helix bundle proteins stabilized the native folded conformations. Molecular dynamics simulations of the bundles illustrate the existence of the hydrophobic core, containing both W15 residues. These results suggest that in addition to packing defects, enhanced dispersion forces may be important in providing higher affinity anesthetic binding sites. Alternatively, the effect of the methionine substitution on halothane binding energetics may reflect either improved access to the binding site or allosteric optimization of the dimensions of the binding pocket. Finally, preferential stabilization of folded protein conformations may represent a fundamental mechanism of inhaled anesthetic action.  相似文献   

5.
The structural features of volatile anesthetic binding sites on proteins are being investigated with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. The current study describes the bacterial expression, purification, and initial characterization of the four-alpha-helix bundle (Aalpha(2)-L1M/L38M)(2). The alpha-helical content and stability of the expressed protein are comparable to that of the chemically synthesized four-alpha-helix bundle (Aalpha(2)-L38M)(2) reported earlier. The affinity for binding halothane is somewhat improved with a K(d) = 120 +/- 20 microM as determined by W15 fluorescence quenching, attributed to the L1M substitution. Near-UV circular dichroism spectroscopy demonstrated that halothane binding changes the orientation of the aromatic residues in the four-alpha-helix bundle. Nuclear magnetic resonance experiments reveal that halothane binding results in narrowing of the peaks in the amide region of the one-dimensional proton spectrum, indicating that bound anesthetic limits protein dynamics. This expressed protein should prove to be amenable to nuclear magnetic resonance structural studies on the anesthetic complexes, because of its relatively small size (124 residues) and the high affinities for binding volatile anesthetics. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules and will provide guidelines regarding the general architecture of binding sites on central nervous system proteins.  相似文献   

6.
Computational methods designed to predict and visualize ligand protein binding interactions were used to characterize volatile anesthetic (VA) binding sites and unoccupied pockets within the known structures of VAs bound to serum albumin, luciferase, and apoferritin. We found that both the number of protein atoms and methyl hydrogen, which are within approximately 8 A of a potential ligand binding site, are significantly greater in protein pockets where VAs bind. This computational approach was applied to structures of calmodulin (CaM), which have not been determined in complex with a VA. It predicted that VAs bind to [Ca(2+)](4)-CaM, but not to apo-CaM, which we confirmed with isothermal titration calorimetry. The VA binding sites predicted for the structures of [Ca(2+)](4)-CaM are located in hydrophobic pockets that form when the Ca(2+) binding sites in CaM are saturated. The binding of VAs to these hydrophobic pockets is supported by evidence that halothane predominantly makes contact with aliphatic resonances in [Ca(2+)](4)-CaM (nuclear Overhauser effect) and increases the Ca(2+) affinity of CaM (fluorescence spectroscopy). Our computational analysis and experiments indicate that binding of VA to proteins is consistent with the hydrophobic effect and the Meyer-Overton rule.  相似文献   

7.
8.
Recent advances in identifying the functions of gangliosides   总被引:6,自引:0,他引:6  
The recent development of several new approaches has proven extremely useful in identifying functions for gangliosides, the sialic-acid containing glycosphingolipids. The first is the incorporation of exogenous gangliosides into the plasma membrane of ganglioside-deficient cells. Using this approach, specific gangliosides have been identified as the receptors for certain bacterial toxins and viruses and as important factors in the organization of fibronectin into an extracellular matrix. The second approach has been a ligand blotting technique which allows detection of ganglioside-binding proteins such as toxins and antibodies. Gangliosides are separated by thin-layer chromatography and overlain with the protein of interest. Specific binding of the ligand to gangliosides can then be detected by either direct or indirect methods. The third approach is the use of the B or binding subunit of cholera toxin as a specific probe for endogenous plasma membrane ganglioside function. The ability of the B subunit to alter the growth of cells directly demonstrates a role for gangliosides as biotransducers of signals for the regulation of cell growth.  相似文献   

9.
Previous high throughput data analysis from several different approaches to affinity purification of protein complexes have revealed catalogues of contaminating proteins that persistently co-purify. Some of these contaminating proteins appear to be specific to one particular affinity matrix used or even to the artificial affinity tags introduced into endogenous proteins for the purpose of purification.A recent approach to minimising non-specific protein interactions in high throughput screens utilises pre-equilibration of affinity surfaces with thiocyanate anions to reduce non-specific binding of proteins. This approach not only reduces the effect of contaminating proteins but also promotes the enrichment of the specific binding partners. Here, we have taken this method and adapted it in an attempt to reduce the abundance of common contaminants in affinity purification experiments. We found the effect varied depending on the bait used, most likely due to its endogenous abundance.  相似文献   

10.
Chemical protein biotinylation and streptavidin or anti‐biotin‐based capture is regularly used for proteins as a more controlled alternative to direct coupling of the protein on a biosensor surface. On biotinylation an interaction site of interest may be blocked by the biotin groups, diminishing apparent activity of the protein. Minimal biotinylation can circumvent the loss of apparent activity, but still a binding site of interest can be blocked when labeling an amino acid involved in the binding. Here, we describe reaction condition optimization studies for minimal labeling. We have chosen low affinity Fcγ receptors as model compounds as these proteins contain many lysines in their active binding site and as such provide an interesting system for a minimal labeling approach. We were able to identify the most critical parameters (protein:biotin ratio and incubation pH) for a minimal labeling approach in which the proteins of choice remain most active toward analyte binding. Localization of biotinylation by mass spectrometric peptide mapping on minimally labeled material was correlated to protein activity in binding assays. We show that only aiming at minimal labeling is not sufficient to maintain an active protein. Careful fine‐tuning of critical parameters is important to reduce biotinylation in a protein binding site.  相似文献   

11.
12.
Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima, respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide-derivatized plates using a His(2)Cys(2) zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.  相似文献   

13.
Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to be superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. For example, almost all Escherichia coli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper we have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions.  相似文献   

14.
To support drug discovery efforts for cyclin-dependent kinase 2 (CDK2), a moderate-throughput binding assay that can rank order or estimate the affinity of lead inhibitors has been developed. The method referred to as temperature-dependent circular dichroism (TdCD) uses the classical temperature-dependent unfolding of proteins by circular dichroism (CD) to measure the degree of protein unfolding in the absence and presence of potential inhibitors. The midpoint of unfolding is the Tm value. Rank ordering the affinity and predictions of the dissociation constant of compounds is obtained by measuring the increase in Tm for different protein-inhibitor complexes. This is the first time an extensive characterization of the TdCD method has been described for characterizing lead inhibitors in a drug discovery mode. The method has several favorable properties. Using the new six-cell Peltier temperature controller for the Jasco 810 spectropolarimeter, one can determine the affinity of 12-18 compounds per day. The method also requires only 20-40 microg protein per sample and can be used to estimate the affinity of compounds with dissociation constants of picomolar to micromolar. An important property of the method for lead discovery is that dissociation constants of approximately 5 microM can be estimated from a single experiment using a low concentration of compound such as 20 microM, which is generally low enough for most small molecules to be soluble for testing. In addition, the method does not require labeling the compound or protein. Although other methods such as isothermal titration calorimetry (ITC) can provide a full thermodynamic characterization of binding, ITC requires 1-2 mg protein per sample, cannot readily determine binding constants below nanomolar values, is most versatile with soluble compounds, and has a throughput of two to three experiments per day. The ITC method is not usually used in a high-throughput drug discovery mode; however, using the thermodynamic information from several ITC experiments can make the TdCD method very robust in determining reliable binding constants. Using the kinase inhibitors BMS-250595, purvalanol B, AG-12275, flavopiridol, and several other compounds, it is demonstrated that one can obtain excellent comparisons between the Kd values of binding to CDK2 obtained by TdCD and ITC.  相似文献   

15.
Increasing the affinity of binding proteins is invaluable for basic and applied biological research. Currently, directed protein evolution experiments are the main approach for generating such proteins through the construction and screening of large mutant libraries. Proliferating cell nuclear antigen (PCNA) is an essential hub protein that interacts with many different partners to tightly regulate DNA replication and repair in all eukaryotes. Here, we used computational design to generate human PCNA mutants with enhanced affinity for several different partners. We identified double mutations in PCNA, outside the main partner binding site, that were predicted to increase PCNA‐partner binding affinities compared to the wild‐type protein by forming additional hydrophobic interactions with conserved residues in the PCNA partners. Affinity increases were experimentally validated with four different PCNA partners, demonstrating that computational design can reveal unexpected regions where affinity enhancements in natural systems are possible. The designed PCNA mutants can be used as a valuable tool for further examination of the regulation of PCNA‐partner interactions during DNA replication and repair both in vitro and in vivo. More broadly, the ability to engineer affinity increases toward several PCNA partners suggests that interaction affinity is not an evolutionarily optimized trait of this system. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Ligand design in biotechnology is underpinned by the control of molecular affinity. Hence, measuring binding interactions is a key component in designing ligands for such uses as therapeutics, diagnostics, biomaterials and separation science. Mass transport, kinetic and thermodynamic methods have been used for macromolecular interaction analysis but also have potential applicability as direct methods for measuring small molecular interactions. They can enhance the ligand design process by providing the ability to choose ligands based on both their kinetic and thermodynamic binding properties.  相似文献   

17.
Protein-protein interactions (PPIs) are central to our understanding of protein function, biological processes and signaling pathways. Affinity purification coupled with mass spectrometry (AP-MS) is a powerful approach for detecting PPIs and protein complexes and relies on the purification of bait proteins using bait-specific binding reagents. These binding reagents may recognize bait proteins directly or affinity tags that are fused to bait proteins. A limitation of the latter approach is that expression of affinity tagged baits is largely constrained to engineered or unnatural cell lines, which results in the AP-MS identification of PPIs that may not accurately reflect those seen in nature. Therefore, generating cell lines stably expressing affinity tagged bait proteins in a broad range of cell types and cell lines is important for identifying PPIs that are dependent on different contexts. To facilitate the identification of PPIs across many mammalian cell types, we developed the mammalian affinity purification and lentiviral expression (MAPLE) system. MAPLE uses recombinant lentiviral technology to stably and efficiently express affinity tagged complementary DNA (cDNA) in mammalian cells, including cells that are difficult to transfect and non-dividing cells. The MAPLE vectors contain a versatile affinity (VA) tag for multi-step protein purification schemes and subcellular localization studies. In this methods article, we present a step-by-step overview of the MAPLE system workflow.  相似文献   

18.
Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein–ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide–PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes.  相似文献   

19.
Protein-fusion constructs have been used with great success for enhancing expression of soluble recombinant protein and as tags for affinity purification. Unfortunately the most popular tags, such as GST and MBP, are large, which hinders direct NMR studies of the fusion proteins. Cleavage of the fusion proteins often re-introduces problems with solubility and stability. Here we describe the use of N-terminally fused protein G (B1 domain) as a non-cleavable solubility-enhancement tag (SET) for structure determination of a dimeric protein complex. The SET enhances the solubility and stability of the fusion product dramatically while not interacting directly with the protein of interest. This approach can be used for structural characterization of poorly behaving protein systems, and would be especially useful for structural genomics studies.  相似文献   

20.
The generation of multiprotein complexes at receptors and adapter proteins is crucial for the activation of intracellular signaling pathways. In this study, we used multiple biochemical and biophysical methods to examine the binding properties of several SH2 and SH3 domain-containing signaling proteins as they interact with the adapter protein linker for activation of T-cells (LAT) to form multiprotein complexes. We observed that the binding specificity of these proteins for various LAT tyrosines appears to be constrained both by the affinity of binding and by cooperative protein-protein interactions. These studies provide quantitative information on how different binding parameters can determine in vivo binding site specificity observed for multiprotein signaling complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号