首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

2.
Membrane synthesis in synchronous cultures of Bacillus subtilis 168   总被引:14,自引:11,他引:3  
Synthesis of bacterial membranes has been investigated in Bacillus subtilis by examining incorporation of amino acids and glycerol into the protein and lipid of membranes of synchronous cultures. A simple reproducible fractionation scheme divides cellular proteins into three classes (i) truly cytoplasmic, (ii) loosely membrane bound, released by chelating agents, and (iii) tightly membrane bound. These comprise approximately 75, 10, and 15%, respectively, of cellular proteins in this organism. Incorporation of radioactivity into these fractions, using steady-state and pulse labeling has been followed during the cell cycle. Cytoplasmic proteins and the loosely membrane-bound proteins are labeled at an exponential rate throughout the cell cycle. The membrane fraction is labeled discontinuously in the cell cycle, with periods of rapid synthesis over the latter part of the cycle and a period with no net synthesis during the early part of the cycle. Pulse labeling indicates that synthesis of membrane occurs at a linear rate that doubles at a fixed time in each cycle, which coincides with the period of zero net synthesis. Rates of membrane synthesis measured by pulse labeling during the period of rapid membrane synthesis are significantly less than indicated by steady-state labeling. These discrepancies are consistent with the hypothesis that during the cell cycle certain proteins are added to the membrane from the cytoplasm and that during the period of zero net synthesis there is an efflux of proteins from the membrane. Evidence in favor of this has been presented. The activity of succinic dehydrogenase (a representative of class c) varies in a step-wise manner with periods of rapid increase, approximately coincident with bursts of membrane protein synthesis, alternating with periods without any increase in activity. The activities of malate dehydrogenase (class a) and reduced nicotinamide adenine dinucleotide dehydrogenase (class b) increased throughout the cell cycle. Phospholipid synthesis is continuous throughout the cell cycle.  相似文献   

3.
4.
When cultured fibroblasts are deprived of serum, the degradation of long-lived proteins and RNA increases, the cells stop proliferating, and they decrease in size. To determine the role of the increased protein catabolism in these responses, we studied the effects of inhibitors of intralysosomal proteolysis in Balb/c 3T3 cells. When these cells were placed in serum-deficient medium (0.5% serum), the rate of degradation of long-lived proteins increased about twofold within 30 min. This increase was reduced by 50-70% with inhibitors of lysosomal thiol proteases (Ep475 and leupeptin) or agents that raise intralysosomal pH (chloroquine and NH4Cl). By contrast, these compounds had little or no effect on protein degradation in cells growing in 10% serum. Thus, in accord with prior studies, lysosomes appear to be the site of the increased proteolysis after serum deprivation. When 3T3 cells were deprived of serum for 24-48 hours, the rate of protein synthesis and the content of protein and RNA and cell volume decreased two- to fourfold. The protease inhibitor, Ep475, reduced this decrease in the rate of protein synthesis and the loss of cell protein and RNA. Cells deprived of serum and treated with Ep475 for 24-48 hours had about twice the rate of protein synthesis and two- to fourfold higher levels of protein and RNA than control cells deprived of serum. The Ep475-treated cells were also about 30% larger than the untreated cells. Thus, the protease-inhibitor prevented much of the atrophy induced by serum deprivation. The serum-deprived fibroblasts also stopped proliferating and accumulated in the G1 phase of the cell cycle. The cells treated with Ep475 accumulated in G1 in a manner identical to untreated serum-deprived cells. Other agents which inhibited protein breakdown in serum-deprived cells also did not prevent the arrest of cell proliferation. Thus the enhancement of proteolysis during serum deprivation appears necessary for the decrease in size and protein synthesis, but probably not for the cessation of cell proliferation. When cells deprived of serum in the presence or absence of Ep475 were stimulated to proliferate by the readdition of serum, the larger Ep475-treated cells began DNA synthesis 1-2 hours later than the smaller untreated cells. Thus, after treatment with Ep475, the rate of cell cycle transit following serum stimulation was not proportional to the cell's size, protein, or RNA content, or rate of protein synthesis.  相似文献   

5.
Rates of uptake of serine and of adenine were measured as a function of cell size, and therefore age, in asynchronous, exponential phase cultures of diploid Saccharomyces cerevisiae strain Y55. In both cases, uptake rates were constant during the initial third of the cell cycle and doubled during the S period in the middle part of the cycle to a constant value during the final third. Cell size and age at mid-step doubling were indistinguishable for serine and adenine uptake, and occurred during the period of DNA synthesis. The results extend an earlier hypothesis of constancy of cell growth rates (mass accumulation rates) and rates of uptake of all or almost all compounds into cells in exponential phase growth to one of piecewise constancy, with an abrupt doubling of growth and uptake rates during DNA synthesis.  相似文献   

6.
The rate of avian leukosis virus (ALV)-specific RNA synthesis has been examined in bot- uninfected and ALV-infected synchronized chicken embryo fibroblasts. RNA from cells labeled for 2h with [3H]uridine was hybridized with avian myeloblastosis virus poly(dC)-DNA, and the hybridized RNA was analyzed with poly(I)-spephadex chromatography. Approximately 0.5% of the RNA synthesized in ALV-infected cells was detected as virus specific, and no more than a twofold variation in the rate of synthesis was detected at different times in the cell cycle. In synchronized uninfected chicken embryo fibroblasts, approximately 0.03% of the RNA synthesized was detected as virus specific, and no significant variation in the rate of synthesis was observed during the cell cycle. Treatment of ALV-infected chicken embryo fibroblasts with cytosine arabinoside or colchicine was used to block cells at different stages in the cell cycle. The rates of virus-specific RNA synthesis in cells so treated did not differ significantly from the rates in either stationary or unsynchronized virus-infected chicken embryo fibroblasts. These findings support the conclusion that after the initial division of an ALV-infected chicken embryo fibroblast and the initiation of virus RNA synthesis, the rate of virus-specific RNA synthesis is independent of the cell cycle.  相似文献   

7.
The influence of 5-amino uracil (5-AU) was investigated on the cell cycle of log growth and division-synchronized Tetrahymena pyriformis GL. The division index of log growth phase Tetrahymena was suppressed by 50% after 40 min in 8 mM 5-AU. Cells division-synthronized by one heat shock per generation were also treated with 5-AU. Cells treated either prior to the first synchronous division (80 min EH) or up to 25 min prior to the second synchronous division (after 160 min EH) were not delayed in their progress through the cell cycle. Cells treated during the S phase of the first free running cell cycle, however, were delayed 5-30 min from reaching the second synchronous division. The effect of 5-AU on DNA and RNA synthesis was also examined. Incorporation of [3H]thymidine into acid-precipitable material was reduced in the presence of 5-AU; the rate of DNA synthesis was also reduced. The depression in the rate of DNA synthesis was greater at the beginning of S than at the end of S. The size of the thymidine pool (nucleosides + nucleotides) did not change during 5-AU treatment; however, an accumulation of thymidine tri-phosphate and a decrease in the amount of thymidine nucleoside was observed. A suppression of [14C]uridine incorporation resulting from 5-AU treatment was observed throughout the cell cycle. The rate of RNA synthesis as monitored by [14C]uridine incorporation into acid precipitable material was also reduced during 5-AU treatment. No change in either the size or the composition of the pool of uridine (nucleoside + nucleotide) was detected in 5-AU treated cells as compared to controls.  相似文献   

8.
The kinetics of stable and unstable ribonucleic acid (RNA) synthesis during the division cycle of Myxococcus xanthus growing in a defined medium was determined. Under these conditions, M. xanthus contains one chromosome which is replicated during 80% of the cell cycle. Stable RNA synthesis was measured by pulselabeling an exponential-phase culture with radioactive uridine and then preparing the cells for quantitative autoradiography. By measuring the size of individual cells as well as the number of grains, the rate of stable RNA synthesis as a function of cell size was determined. Unstable RNA synthesis during the division cycle was determined by correlating the data for stable RNA synthesis with the relative amounts of stable and unstable RNA labeled during the short pulse. The data reported here demonstrate that: (i) cells synthesize both stable and unstable RNA throughout the division cycle; (ii) the rate of stable RNA synthesis increases in two discrete steps, corresponding to average ages of 0.15 and 0.75 generations; (iii) the rate of unstable RNA synthesis exhibits an initial rise, followed by a relatively constant rate of synthesis, and finally, a burst of unstable RNA synthesis prior to septum formation. The half-life of unstable RNA of M. xanthus, generation time of 390 min at 30 C, was 4 min. Comparison of the rates of stable and unstable RNA synthesis indicates noncoordinate RNA synthesis within the normal division cycle.  相似文献   

9.
10.
Explants of Jerusalem artichoke tuber tissue were cultured innutrient medium with the hormone, 2,4-dichlorophenoxyaceticacid. After a lag period, 90 per cent of the cells divided synchronously.During the first two cell cycles, the rate of ribosomal RNAsynthesis increased sharply in two steps; before the onset ofDNA synthesis for the first division, and early in interphasebefore the second division. Rates of RNA and protein accumulation,and phosphate uptake also increased sharply at these times.From experiments with explants in which DNA synthesis and celldivision had been inhibited, it was concluded that the stepwisepattern of ribosomal RNA synthesis was not caused by the replicationof ribosomal RNA genes, as can happen in mammalian cells. Instead,the periodicity of metabolism was found to be independent ofthe DNA synthesis-cell division cycle. A cause of the stepwisenature of ribosomal RNA synthesis is suggested. It is considered that despite the high synchrony of division,the system is not completely suited for the study of eventsassociated with the cell cycle in higher plants. However, thesynchrony of much of early metabolism suits it to the studyof induction of cell division in previously non-dividing cells,and the consequent process of de-differentiation.  相似文献   

11.
Protein and RNA contents in muscle of normal and hereditary dystrophic mice C57BL/6J-dy/dy were reexamined on the basis of DNA. It was observed that protein and RNA contents in dystrophic muscle decreased at the early stage of the disease, in disagreement with the reported results on a wet weight basis, in which RNA content in dystrophic muscle had been found to increase. Rates of protein and RNA systhesis in the early stage of the disease were also determined with a concomitant check of the specific activities of free amino acids and free nucleotides. The rates of both protein and RNA synthesis (i.e., specific activities of protein and RNA) were higher in the dystrophic muscle, but when they were expressed on a DNA basis, the total protein synthesis per cell was the same as that of normal muscle and the total RNA synthesis per cell showed a smaller increase in dystrophic muscle. These apparent increases of protein and RNA synthesis were discussed in connection with the decreased protein and RNA contents in the cells of dystrophic muscle. The synthesized RNAs seemed to contain mRNA on the basis of sedimentation character and Millipore filter binding ability. However, no particular RNA was mainly synthesized in dystrophic muscle.  相似文献   

12.
Rates of protein synthesis in skeletal, cardiac and smooth muscle of fully grown fowl (Gallus domesticus) were determined in vivo by means of the constant infusion method using [14C]proline. In the anterior latissimus dorsi muscle, containing predominantly slow fibres, the average synthesis rate of non-collagen muscle proteins was 17.0 +/- 3.1% per day, a value higher than that obtained for cardiac muscle (13.8 +/- 1.3% per day) and for smooth muscle of the gizzard (12.0 +/- 1.9% per day). In the posterior latissimus dorsi muscle, containing predominantly fast fibres, synthesis rates were much lower (6.9 +/- 1.8% per day). In each case these average rates for the non-collagen protein were similar to the average rate for the sarcoplasmic and myofibrillar protein fractions. The RNA concentration of these four muscles showed that relative rates of protein synthesis were determined mainly by the relative RNA concentrations. The rate of protein synthesis per unit of DNA (the DNA activity) was similar in the two skeletal muscles, but somewhat lower in cardiac muscle and gizzard, possibly reflecting the larger proportion of less active cell types in these two muscles. These quantitative aspects of protein turnover in the two skeletal muscles are discussed in terms of the determination of ultimate size of the DNA unit, and in relation to muscle ultrastructure.  相似文献   

13.
RNA synthesis has been studied in “large” oocytes of Xenopus laevis, both as a function of time after injection of females with human chorionic gonadotropin (HCG) and in relation to the induction of maturation with progesterone in vitro. Rates of RNA synthesis were measured by analyzing the kinetics of incorporation of exogenous [3H]guanosine, and microinjected [3H]- or [14C]GTP, into acid-precipitable material, coupled with measurements of precursor pool specific activity. The kinetics of incorporation into RNA of injected precursor are biphasic, indicating the synthesis of both stable and unstable RNA species. Estimates of the total rate of synthesis (stable and unstable) were derived from fitting a linear function to data over the first 60–90 min, while a linear function fit to the data beyond 90 min represented largely the synthesis of stable RNA species.Exposure of oocytes to progesterone had no effect on initial synthetic rates, but maturing oocytes synthesized stable RNA at 1.4–1.6 times the rate in control oocytes. A comparison of data obtained with oocytes from unstimulated (no prior HCG treatment) and HCG-stimulated females indicated that HCG has no substantial effect on rates of RNA synthesis. The significance of continued RNA synthesis in large full grown oocytes is discussed.  相似文献   

14.
Relative rates of protein synthesis in individual cells were determined by allowing random populations to incorporate tritiated leucine for very short periods (pulses) and then examining autoradiographs of these cells to assess the amount of incorporation (grains per cell) as a function of cell size. Relative rates of ribonucleic acid (RNA) synthesis were determined in the same way by using tritiated uracil. Unless the uracil pulse was very short (less than 1/20 generation), the RNA labeled during the pulse was predominantly ribosomal. The rate of protein synthesis in individual cells is directly proportional to cell size. The rate of RNA synthesis also increases linearly with size in larger cells, but there appears to be a slight delay in RNA synthesis immediately after cell division. Total cellular content of protein, RNA, and ribosomes is directly proportional to cell size. Thus, we conclude that, in individual cells during the cell cycle (i) the average rate of protein synthesis per ribosome is constant and (ii) the increase in macromolecular mass of the cell is exponential with age.  相似文献   

15.
Specific activities of Saccharomyces cerevisiae RNA polymerases I and II were measured in cells growing under different nutrient conditions and throughout the mitotic cell cycle. The specific activity of RNA polymerase I (possibly the ribosomal polymerase) does not vary during the yeast cell cycle. In contrast the specific activity of RNA polymerase II (messenger polymerase) increases during the first third of the cycle and thereafter declines. The independent regulation of synthesis of these two enzymes is further emphasised by observations on the response to different nutrient conditions. Shifting cells from minimal to rich medium led to enhanced RNA polymerase I activity but very little change in activity of RNA polymerase II. Furthermore the activity of RNA polymerase I varies directly with change in growth rate whereas the activity of RNA polymerase II is approximately constant over a range of growth rates. From this data it is suggested: (i) The synthesis of these two enzymes is independently regulated; (ii) RNA polymerase I is synthesised continuously throughout the cycle whereas RNA polymerase II is synthesised periodically early in the cell cycle.  相似文献   

16.
Abstract The S -adenosylmethionine (AdoMet) analog Sinefungin (SF) caused actively dividing cells of the yeast Saccharomyces cerevisiae to arrest within one cell cycle as unbudded cells. Reciprocal shift experiments showed that these cells were blocked in performance of the cell cycle regulatory step "start". Both protein and RNA synthesis rates were only moderately affected during SF-mediated cell cycle arrest; these results indicate that SF provokes a different sort of metabolic response than found upon treatment with other "start"-arrest compounds.  相似文献   

17.
We studied action mechanisms of pantoyl lactone and butyl alcohol on the macromolecular synthesis of E. coli. Protein synthesis was not significantly suppressed by these agents. DNA synthesis was more remarkably affected than RNA synthesis by them. Synchronous cultures of E. coli were subsequently used to investigate the inhibition of DNA replication with these agents. It was consequently shown that these agents inhibit the initiation of a new cycle of DNA replication in this organism but permit the completion of DNA replication initiated before addition of these agents to the medium.  相似文献   

18.
19.
The nutritional requirement for zinc in the proliferation of normal and malignant cells has been demonstrated in a number of animal studies. A distinction is made between the effect of zinc status upon the host during carcinogenesis and tumor growth. The present studies focus on the Ehrlich ascites tumor in mice fed a semipurified zinc-deficient diet along with defined concentration of zinc in the drinking water. This model of zinc deficiency is compared with others in which chelating agents are used to create zinc-deficient conditions or the microorganismEuglena gracilis is examined in a defined zinc-deficient medium. It is reported here that Ehrlich cells remain quiescent for several weeks in severely deficient mice, suggesting their restriction to a G1 or G0 state of the cell cycle. The kinetics of thymidine and uridine uptake and incorporation into DNA and RNA in Zn-normal and Zn-deficient tumors is consistent with the inhibition of thymidine kinase and DNA polymerase in the Zn-deprived system, but with little effect on RNA synthesis. The concentration of metabolites of these labeled nucleosides in Ehrlich cells is also consistent with a primary effect upon thymidine kinase. Although the ascites fluid Zn is depressed in Zn deficiency, total cellular zinc and its distribution among cell fractions is not significantly affected. It is suggested that these effects are specific in nature and not the result of a general lack of zinc for zinc metalloproteins and other binding sites in the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号