首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the host-selection ability of the broad mite Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). To make long-distance-shifts from one host plant patch to another, broad mites largely depend on phoretic association with whiteflies. However, the host plants of whiteflies and broad mites are not necessarily the same. We determined the host-preference and acceptance of free-moving and phoretic broad mites using two behavioral bioassays. We used a choice test to monitor host selection by free-moving mites. In the case of phoretic mites, we compared their rate of detachment from the phoretic vector Bemisia tabaci placed on leaves taken from various host plants. The suitability of the plant was further determined by monitoring mite’s fecundity and its offspring development. We compared the mites’ responses to young and old cucumber (Cucumis sativus cv. ‘Kfir’) leaves (3rd and 8–9th leaf from the apex, respectively), and two tomato (Solanum lycopersicum cvs. ‘M82’ and ‘Moneymaker). Free-moving mites of all stages and both sexes preferred young cucumber leaves to old cucumber leaves and preferred young cucumber rather than young tomato leaves, demonstrating for the first time that broad mites are able to choose their host actively. As for phoretic mated females, although eventually most of the mites abandoned the phoretic vector, the rate of detachment from the whitefly vector was host dependent and correlated with the mites’ fitness on the particular host. In general, host preference of phoretic female mites resembled that of the free-moving female. Cues used by mites for host selection remain to be explored.  相似文献   

2.
Macchioni F 《Parassitologia》2007,49(1-2):17-22
Dispersal capacity plays a central role in the radiation of animals, facilitating the exploitation of habitats variously distributed in space or in time or both. Many living species are unable to leave a host, crawl around, and find a new host, so they must rely on external factors to be transmitted. Biotical factors may be important in passive transport and the process, by means of which an animal is passively transported by a selected carrier of different species, is known as "phoresy". Phoresy is a phenomenon in which one animal (the phoretic) seeks out and attaches to an animal of another species, with which it does not share any phase of the life cycle, for dispersal, during which time the phoretic animal becomes quiescent, stopping feeding and development. Activity starts again beginning with detachment, induced by stimuli originating from its carrier or the microhabitat. The adaptive traits of phoresy may be categorized as follow: host surface, quiescence, recognition of signals to abandon the carrier and, if needed, synchronization with the host life cycle. Phoresy is exploited by many Arthropods. In Acarina, there are basically four main types of phoresy. First, there is a type in which adult females are the only forms becoming phoretic and attachment is by means of chelicerae, palpal hooks and ambulacral claws, which grasp a seta or a fold of the integument of carrier-host. The second type is represented by mites, in which deutonymphs are phoretic; there is generally no cheliceral or sucker attachment in this group, mites instead hanging on by their ambulacral claws. The third type is similar to the second in that deutonymphs are phoretic; however, in this case, attachment to the host is by means of an anal pedicel formed by a substance, extruded through the anus, which hardens upon coming in contact with air and literally glues the mite to its host. In the fourth type there is a very highly modified deutonymph stage, called hypope, which only occurs at certain times, presumably when environmental conditions are no longer appropriate for the mite. Hypope is simplified morphologically, may have many sucker-like discs or claspers for efficient attachment, and is much more resistant to desiccation than are other stages of the life cycle.  相似文献   

3.
Phoretic mites are likely the most abundant arthropods found on carcases and corpses. They outnumber their scavenger carriers in both number and diversity. Many phoretic mites travel on scavenger insects and are highly specific; they will arrive on a particular species of host and no other. Because of this, they may be useful as trace indicators of their carriers even when their carriers are absent. Phoretic mites can be valuable markers of time. They are usually found in a specialised transitional transport or dispersal stage, often moulting and transforming to adults shortly after arrival on a carcase or corpse. Many are characterised by faster development and generation cycles than their carriers. Humans are normally unaware, but we too carry mites; they are skin mites that are present in our clothes. More than 212 phoretic mite species associated with carcases have been reported in the literature. Among these, mites belonging to the Mesostigmata form the dominant group, represented by 127 species with 25 phoretic mite species belonging to the family Parasitidae and 48 to the Macrochelidae. Most of these mesostigmatids are associated with particular species of flies or carrion beetles, though some are associated with small mammals arriving during the early stages of decomposition. During dry decay, members of the Astigmata are more frequently found; 52 species are phoretic on scavengers, and the majority of these travel on late-arriving scavengers such as hide beetles, skin beetles and moths. Several species of carrion beetles can visit a corpse simultaneously, and each may carry 1–10 species of phoretic mites. An informative diversity of phoretic mites may be found on a decaying carcass at any given time. The composition of the phoretic mite assemblage on a carcass might provide valuable information about the conditions of and time elapsed since death.  相似文献   

4.
5.
Thirteen species of ectoparasitic (12) or phoretic (1) arthropods were collected from 26 adult Virginia opossums, Didelphis virginiana, live-trapped from April through September 1987 in Davidson County, Tennessee. The cat flea Ctenocephalides felis and the American dog tick Dermacentor variabilis were the predominant species with respect to mean intensity and prevalence. The macronyssid mite Ornithonyssus wernecki and the atopomelid mite Didelphilichus serrifer, both specific parasites of this host, showed high intensities but low prevalences. Other fleas collected were Cediopsylla simplex, Ctenophthalmus pseudagyrtes, and Orchopeas howardi. The tick Amblyomma americanum, the myobiid mite Archemyobia inexpectatus, and the trombiculid (chigger) mites Eutrombicula splendens, Leptotrombidium peromysci (first record from this host) and Neotrombicula cavicola (first record from this host), were also recorded. One phoretic species, the glycyphagid mite Marsupialichus brasiliensis, was noted.  相似文献   

6.
The phoretic association betweenMacrocheles muscaedomesticae and flies that inhabited poultry manure in a poultry farm in Sungai Buloh, Selangor, Malaysia was studied. The effects of temperature, relative humidity and fly abundance on phoretic rates also were in vestigated.The most abundant fly species found wasMusca domestica; Musca sorbens, Chrysomyia megacephala andOphyra chalcogaster were present in relatively large numbers.Representatives of ten families of mites were found on collectedMu. domestica. The most common mite wasMa. muscaedomesticae (Macrochelidae), found on all four species of flies mentioned above. The highest infestation (2.0%) occurred onO. chalcogaster butMu. domestica had the highest average number infested (5.7).The ventral part of the housefly's abdomen was the most common site of mite attachment. Usually only one mite was found attached per fly.The highest phoretic rate recorded was 64.4Ma. muscaedomesticae per 1000Mu. domestica. There was no correlation between phoretic rates andMa. muscaedomesticae abundance, nor was relative humidity a factor. However, a positive correlation was recorded in this host species between phoretic rates and temperature.This paper forms part of the Ph. D. thesis of the author submitted to the Universiti Sains Malaysia, Malaysia, in March 1988.  相似文献   

7.
Most nests of brood-caring insects are colonized by a rich community of mite species. Since these nests are ephemeral and scattered in space, phoresy is the principal mode of dispersal in mites specializing on insect nests. Often the mites will arrive on the nest-founding insect, reproduce in the nest and their offspring will disperse on the insect's offspring. A literature review shows that mites reproducing in the underground brood chambers of burying beetles use alternative routes for dispersal. For example, the phoretic instars of Poecilochirus spp. (Mesostigmata: Parasitidae) disperse early by attaching to the parent beetles. Outside the brood chamber, the mites switch host at carcasses and pheromone-emitting male beetles, where juvenile and mature burying beetles of several species congregate. Because they preferably switch to beetles that are reproductively active and use all species of burying beetles within their ranges, they have a good chance of arriving in a new brood chamber. Other mite associates of burying beetles (Alliphis necrophilus and Uropodina) disperse from the brood chamber on the beetle offspring. We suggest that these mites forgo the possible time gain of dispersing early on the parent beetles because their mode of attachment precludes host switching. Their phoretic instars, once attached, have to stay on their host and so only dispersing on the beetle offspring guarantees that they are present on reproducing burying beetles of the next season. The mites associated with burying beetles providean example of multiple solutions to one life history problem – how to find a new brood chamber for reproduction. Mites that have mobile phoretic instars disperse on the parent beetles and try to arrive in the next brood chamber by host switching. They are independent of the generation cycle of a single host and several generations of mites per host generation are possible. Mites that are constrained by their mode of attachment disperse on the beetle offspring and wait until their host becomes mature and reproduces. By doing this they synchronize their generation time with the generation time of their host species. Exp Appl Acarol 22: 621–631 © 1998 Kluwer Academic Publishers  相似文献   

8.
1 Dendroctonus frontalis, the southern pine beetle, is associated with a diverse community of fungi and mites that are phoretic on the adult beetles. Tarsonemus ips, T. kranzti and T. fusarii (Acarina: Tarsonemidae) may interact within this community in ways that link the population dynamics of D. frontalis, the mites and three dominant species of fungi. We explored species associations by comparing the dietary suitability of different fungi for Tarsonemus spp. 2 All three mite species fed and reproduced at high rates when feeding on the bluestain fungus, Ophiostoma minus, which is an antagonist of D. frontalis larvae. 3 Mites also had positive population growth rates when feeding upon Ceratocystiopsis ranaculosus, one of the mycangial fungi, but could barely reproduce when feeding upon Entomocorticium sp. A, the mycangial fungus that is most suitable for D. frontalis. 4 During the time from colonization of a tree by D. frontalis adults until departure from the tree of their progeny (≈ 40 d at 30 °C), mite populations feeding upon O. minus can increase by factors of up to 209 (T. fusarii), 173 (T. ips) or 384 (T. krantzi). These high growth rates are allowed by rapid development (age of first reproduction = 8–9 d), high fecundity (≈ 1 egg/d) and high longevity (> 28 d). 5 Precocious mating increases the chance that females are mated prior to colonizing a new tree and arrhenotokous parthenogenesis permits reproduction by unmated females. 6 Tarsonemus mites may introduce negative feedback into D. frontalis population dynamics by generating indirect interactions between D. frontalis and O. minus.  相似文献   

9.
This paper reports on ectoparasitic chigger mites found on small mammals in Yunnan Province, southwest China. Data were accumulated from 19 investigation sites (counties) between 2001 and 2009. A total of 10 222 small mammal hosts were captured and identified; these represented 62 species, 34 genera and 11 families in five orders. From the body surfaces of these 10 222 hosts, a total of 92 990 chigger mites were collected and identified microscopically. These represented 224 species, 22 genera and three subfamilies in the family Trombiculidae (Trombidiformes). Small mammals were commonly found to be infested by chigger mites and most host species harboured several species of mite. The species diversity of chigger mites in Yunnan was much higher than diversities reported previously in other provinces of China and in other countries. A single species of rodent, Eothenomys miletus (Rodentia: Cricetidae), carried 111 species of chigger mite, thus demonstrating the highest species diversity and heaviest mite infestation of all recorded hosts. This diversity is exceptional compared with that of other ectoparasites. Of the total 224 mite species, 21 species accounted for 82.2% of all mites counted. Two species acting as major vectors for scrub typhus (tsutsugamushi disease), Leptotrombidium scutellare and Leptotrombidium deliense, were identified as the dominant mite species in this sample. In addition to these two major vectors, 12 potential or suspected vector species were found. Most species of chigger mite had a wide range of hosts and low host specificity. For example, L. scutellare parasitized 30 species of host. The low host specificity of chigger mites may increase their probability of encountering humans, as well as their transmission of scrub typhus among different hosts. Hierarchical clustering analysis showed that similarities between different chigger mite communities on the 18 main species of small mammal host did not accord with the taxonomic affinity of the hosts. This suggests that the distribution of chigger mites may be strongly influenced by the environment in which hosts live.  相似文献   

10.
11.
The parasitic miteHemisarcoptes coccophagus Meyer (Astigmata: Hemisarcoptidae) feeds on armored scale insects (Homoptera: Diaspididae). Three host scales were studied: chaff scale (Parlatoria pergandii Comstock andP. cinerea Hadden) infesting citrus (grapefruit and orange) orchards, latania scale [Hemiberlesia lataniae (Signoret)] and olcander scale (Aspidiotus nerii Bouche) occurring on acacia (Acacia cyanophylla) branches and leaves. The overall dynamics of mite populations were similar on the different scale species, although the level of attack on each sampled diaspidid host was different. Rates of young mite stages were highly variable on all three hosts throughout the sampling period while adult rates were stable, constituting around 20% of all mites. No oviposition by mites occurred in mid-winter on any scale species, on any plants or parts, at all sampling sites. Of the three diaspidids, highest mite prevalence (parasitization rate) occurred on latania scale. Mite prevalence on oleander scale infesting mature leaves was higher than on young leaves.H. coccophagus apparently first attacks latania scale on branches, it then disperses to the same host inhabiting mature leaves, from there to co-occurring oleander scale and finally to oleander scale infesting young leaves. Mite prevalence on chaff scale was influenced by host plants and climatic regions: in the Negev it was higher than in the coastal plain, with scales on grapefruit being more heavily attacked at the former site but not on coastal plain. Our data suggest thatH. coccophagus prefers ovipositing scale females. The decreasing order of preference for other scale stages was: young females immature males, 2nd-instar nymphs females.  相似文献   

12.
13.
14.
《Fungal biology》2014,118(5-6):472-483
Bark and ambrosia beetles are ecologically and economically important phloeophagous insects that often have complex symbiotic relationships with fungi and mites. These systems are greatly understudied in Africa. In the present study we identified bark and ambrosia beetles, their phoretic mites and their main fungal associates from native Virgilia trees in the Cape Floristic Region (CFR) of South Africa. In addition, we tested the ability of mites to feed on the associated fungi. Four species of scolytine beetles were collected from various Virgilia hosts and from across the CFR. All were consistently associated with various Geosmithia species, fungi known from phloeophagous beetles in many parts of the world, but not yet reported as Scolytinae associates in South Africa. Four beetle species, a single mite species and five Geosmithia species were recovered. The beetles, Hapalogenius fuscipennis, Cryphalini sp. 1, and Scolytoplatypus fasciatus were associated with a single species of Elattoma phoretic mite that commonly carried spores of Geosmithia species. Liparthrum sp. 1 did not carry phoretic mites. Similar to European studies, Geosmithia associates of beetles from Virgilia were constant over extended geographic ranges, and species that share the same host plant individual had similar Geosmithia communities. Phoretic mites were unable to feed on their Geosmithia associates, but were observed to feed on bark beetle larvae within tunnels. This study forms the first African-centred base for ongoing global studies on the associations between arthropods and Geosmithia species. It strengthens hypotheses that the association between Scolytinae beetles and dry-spored Geosmithia species may be more ubiquitous than commonly recognised.  相似文献   

15.
Blattisocius keegani (Fox) is a predatory mite in the family Ascidae (Acari), noted for potential biological control of Coleopteran stored product pests. Performance of B. keegani on eggs of navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), was investigated. Mites completed development from egg to adult in 9.2±0.22 days at 25°C and 50-60% relative humidity, and in 6.33±0.29 days at 32.2°C, 30% relative humidity. Mites provisioned with three or five eggs consumed a median of 1.25 to 1.5 eggs, with a maximum of three eggs consumed over 24?h. Regression analyses indicated egg-laying by B. keegani was significantly correlated with the number of A. transitella eggs consumed, and female mites laid an average of 5.82±0.44 eggs over 72?h. Blattisocius keegani, developed on fresh and frozen eggs, laid significantly more eggs when provided with fresh eggs (F3,26=6.16, P=0.0026) and were able to develop on frozen Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as an alternative host. Mites were equally fecund when fed eggs stored at 0° or -20°C. Provisioning of adult moth bodies in addition to egg prey items increased mite fecundity, although it was demonstrated that B. keegani are phoretic on adult moths as well. The results are the first experimental evidence of B. keegani as a predator of Lepidopteran eggs, as a phoretic species, and of their potential for biological control of navel orangeworm.  相似文献   

16.
This study evaluated for the first time the grooming response of honey bees to Varroa mites of different ages and reproductive statuses in the laboratory. Plastic cages containing a section of dark comb and about 200 bees were inoculated with groups of four classes of mites: gravid, phoretic foundresses, phoretic daughters and a combination of gravid and phoretic foundress mites. Each cage received 20 mites belonging to one of these classes. Our results showed that, 1?day after mite inoculation, phoretic daughter mites were the most prone to grooming by honey bees with an average mite drop of 49.8?±?2.6?%. The lowest mite drop was recorded for bees inoculated with phoretic foundresses (30.3?±?3.6?%) but was comparable to bees inoculated with gravid mites (31.8?±?3.8?%) and the combination of gravid and phoretic foundress mites (34.2?±?3.2?%). No differences among mite types were detected during the second and third days of observation. Regardless of mite type, the highest mite drop was recorded on the first day (35?±?2.1?%) compared to the drop for any subsequent day (<10?%). Because of the great reproductive potential of daughter mites, their inclusion in assessments of grooming behaviour may increase our insight into the importance of grooming in mite resistance.  相似文献   

17.
The term synhospitality means the association of two or more closely related parasite species with one host species (Eichler, 1966). The cases of two or three synhospitalic species are known from the same host species, and especially ones where parasites were recorded from different parts of the host range, are quite common. The most ordinary reason causing synhospitality in permanent parasites is the host switching. Nevertheless, there are a number of synhospitality cases, where the parasite complex is monophyletic because evolved on a single host species. The special term--"phylogenetic synhospitality" (FS) is proposed for these cases of synhospitality. Most known cases of FS in acariform mites, permanent parasites of vertebrates, are analysed. It is found out that both astigmatan and prostigmatan parasite mites demonstrate a numbers of FS. The majority of these examples represent parasitism of two or three synhospitalic parasite species. Impressive examples of FS involving a number of synhospitalic species is shown by only astigmatan mites inhabiting the fur of mammals or plumage of birds. Most known examples involving four or more mite species are discussed: 51 mite species of the genus Schizocarpus (Chirodiscidae) parasitizing Castor fiber and C. canadensis (Castoridae); 6 species of Listrophorus spp. (Listrophoridae) from Ondatra zibethicus (Cricetidae); 23 species of Listrophoroides s. 1. (Atopomelidae) from Maxomys surifer (Muridae); 21 species of Cytostethum (Atomelidae) from Potorous tridactylus (Potoridae); 4 species of Listrophoroides (Afrolistrophoroides) from Malacomys longipes (Muridae); 7 species of Fainalges (Xolalgidae) from Aratinga holochlora (Psittacidae); 4 species of Zygepigynia (Pteronyssidae) from Chrysocolaptes lucidus (Picidae). The main reason of FS is that, in spite of the Fahrenholz's rule, the speciation of many parasites proceeds much more intensively than in their hosts because of the more rapid replacement of the parasitic generations. The first factor causing FS is the mite speciation it temporary segregated populations of the host (allopatric speciation). In this case, the "multispecies complexes" appeared after the subsequent reintegration of the host populations formerly isolated. The second factor is the speciation due to the specialization of mites to local microhabitats in the fur or plumage of host (sympatric or synxenic speciation). The second way of speciation is most characteristic for mites with highly specialized attaching structures. The phenomenon of FS more resides in ectoparasites of mammals rather than in feather mites in spite of much more structural complicacy of plumage rather than the fur. The high mobility of birds and wide dispersion of their new generations probably embarrass the process of sympatric speciation in their parasites. As a rule, only really significant geographical barriers play role for population isolation in birds. Thus, it could be concluded that two independent factors or their combination lead to FS. (i) The complex and/or disjunctive host range giving a possibility for allopatric speciation in parasites. (ii) The deep mite specialization to local microhabitats on the host body causing sympatric (synxenic) speciation. Fur of mammals and plumage of birds are very complicated in structure and microconditions and provide a considerable number of different microhabitats for mites inhabiting them. The prevalence of one of these two factors depends on the biological peculiarities of both parasites and their hosts. In mites with lesser specialized attaching organs, for example in atopomelids, allopatric speciation dominates. In mites with strongly specialized attaching organs, for example in listrophorids or chirodiscids, both pathways of speciation may take place. In feather mites, sympatric speciation should be more probable due to quite complicate and various structure of feathers in avian hosts. In fur mites, sympatric speciation is more likely in mites parasitizing hosts with peculiar ecology, for example in semiaquatic rodents possessing quite different fur structure in different parts of the body.  相似文献   

18.
19.
Oribatid mites may be of epidemiological and medical importance because several species have been shown to serve as intermediate hosts for anoplocephalid tapeworms of wild and domestic animals. Despite their economic and conservation significance, relatively few studies examined factors influencing the effective number of oribatid mites that can serve as intermediate hosts. We examined variation in the structure of the edaphic arthropod community in functionally different territory parts of the Alpine marmot (Marmota marmota latirostris), a known definitive host of a prevalent anoplocephalid tapeworm, Ctenotaenia marmotae. We used a field experiment to test whether the abundance of oribatid mites in marmot pastures is affected by the presence of fresh herbivore faeces. We found that the abundance of soil and litter dwelling oribatid mites in marmot pastures did not change shortly after faeces addition. In contrast, numbers of other predominant soil–litter and phoretic microarthropods increased after faeces addition. The abundance of the two predominant phoretic mites colonizing the faeces was inversely related to the abundance of oribatid mites. In contrast, the abundance of a ubiquitous soil–litter mesostigmatid mite was a positive function of oribatid numbers. Although absolute numbers of oribatid mites did not change after faeces addition, our study suggests that, depending on soil quality or type, the probability of tapeworm egg ingestion by oribatid mites can be reduced due to increased interspecific prey-predatory and trophic interactions. Latrine site selection in Alpine marmots is consistent with a reduced probability of tapeworm transmission by oribatids.  相似文献   

20.
1. Parasites can affect the communities of their hosts; and hosts, in turn, shape communities of parasites and other symbionts. This makes host–symbiont relationships a key but often overlooked aspect of community ecology. 2. Mites associated with bees have a range of lifestyles; however, little is known about mites associated with wild bees or about factors influencing the make‐up of bee‐associated mite communities. This study investigated how mite communities associated with bumble bees (Bombus spp.) are shaped by the Bombus community and geographic proximity. 3. Bees were collected from 15 sites in Ontario, Canada, and examined for mites. Mite abundance and species richness increased with local bee abundance. Several bee species also differed in mite abundance, species richness, prevalence, and diversity. Locally uncommon species tended to have more mites than other bees. Queen bees had the most mites, and males had more mites than workers. 4. Spatial proximity was not a predictor of mite community composition, despite a strong effect of proximity on bee community similarity. 5. On the 11 Bombus spp. examined, 33 mite species were found. Whereas nearly half of these mite species are obligate associates of bumble bees, none was restricted to particular Bombus species. 6. The best predictor of mite community composition was bee identity. Although many parasite communities show strong geographic patterns, the communities of primarily commensalistic bee‐mites in this study did not. These findings have implications for bumble bee conservation, given that pollen‐feeding commensals might become harmful at high densities or act as disease vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号