首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a process called quorum sensing, bacteria communicate with one another using secreted chemical signalling molecules termed autoinducers. A novel autoinducer called AI-2, originally discovered in the quorum-sensing bacterium Vibrio harveyi, is made by many species of Gram-negative and Gram-positive bacteria. In every case, production of AI-2 is dependent on the LuxS autoinducer synthase. The genes regulated by AI-2 in most of these luxS-containing species of bacteria are not known. Here, we describe the identification and characterization of AI-2-regulated genes in Salmonella typhimurium. We find that LuxS and AI-2 regulate the expression of a previously unidentified operon encoding an ATP binding cassette (ABC)-type transporter. We have named this operon the lsr (luxS regulated) operon. The Lsr transporter has homology to the ribose transporter of Escherichia coli and S. typhimurium. A gene encoding a DNA-binding protein that is located adjacent to the Lsr transporter structural operon is required to link AI-2 detection to operon expression. This gene, which we have named lsrR, encodes a protein that represses lsr operon expression in the absence of AI-2. Mutations in the lsr operon render S. typhimurium unable to eliminate AI-2 from the extracellular environment, suggesting that the role of the Lsr apparatus is to transport AI-2 into the cells. It is intriguing that an operon regulated by AI-2 encodes functions resembling the ribose transporter, given recent findings that AI-2 is derived from the ribosyl moiety of S-ribosylhomocysteine.  相似文献   

2.
3.
4.
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior.  相似文献   

5.
Our previous studies showed that the Aggregatibacter actinomycetemcomitans RbsB protein interacts with cognate and heterologous autoinducer 2 (AI-2) signals and suggested that the rbsDABCK operon encodes a transporter that may internalize AI-2 (D. James et al., Infect. Immun. 74:4021-4029, 2006.). However, A. actinomycetemcomitans also possesses genes related to the lsr operon of Salmonella enterica serovar Typhimurium which function to import AI-2. Here, we show that A. actinomycetemcomitans LsrB protein competitively inhibits the interaction of the Vibrio harveyi AI-2 receptor (LuxP) with AI-2 from either A. actinomycetemcomitans or V. harveyi. Interestingly, LsrB was a more potent inhibitor of LuxP interaction with AI-2 from V. harveyi whereas RbsB competed more effectively with LuxP for A. actinomycetemcomitans AI-2. Inactivation of lsrB in wild-type A. actinomycetemcomitans or in an isogenic RbsB-deficient strain reduced the rate by which intact bacteria depleted A. actinomycetemcomitans AI-2 from solution. Consistent with the results from the LuxP competition experiments, the LsrB-deficient strain depleted AI-2 to a lesser extent than the RbsB-deficient organism. Inactivation of both lsrB and rbsB virtually eliminated the ability of the organism to remove AI-2 from the extracellular environment. These results suggest that A. actinomycetemcomitans possesses two proteins that differentially interact with AI-2 and may function to inactivate or facilitate internalization of AI-2.  相似文献   

6.
7.
The bacterial quorum-sensing autoinducer 2 (AI-2) has received intense interest because the gene for its synthase, luxS, is common among a large number of bacterial species. We have identified luxS-controlled genes in Escherichia coli under two different growth conditions using DNA microarrays. Twenty-three genes were affected by luxS deletion in the presence of glucose, and 63 genes were influenced by luxS deletion in the absence of glucose. Minimal overlap among these gene sets suggests the role of luxS is condition dependent. Under the latter condition, the metE gene, the lsrACDBFG operon, and the flanking genes of the lsr operon (lsrR, lsrK, tam, and yneE) were among the most significantly induced genes by luxS. The E. coli lsr operon includes an additional gene, tam, encoding an S-adenosyl-l-methionine-dependent methyltransferase. Also, lsrR and lsrK belong to the same operon, lsrRK, which is positively regulated by the cyclic AMP receptor protein and negatively regulated by LsrR. lsrK is additionally transcribed by a promoter between lsrR and lsrK. Deletion of luxS was also shown to affect genes involved in methionine biosynthesis, methyl transfer reactions, iron uptake, and utilization of carbon. It was surprising, however, that so few genes were affected by luxS deletion in this E. coli K-12 strain under these conditions. Most of the highly induced genes are related to AI-2 production and transport. These data are consistent with the function of LuxS as an important metabolic enzyme but appear not to support the role of AI-2 as a true signal molecule for E. coli W3110 under the investigated conditions.  相似文献   

8.
9.
10.
Helicobacter pylori possesses a homolog of the luxS gene, initially identified by its role in autoinducer production for the quorum-sensing system 2 in Vibrio harveyi. The genomes of several other species of bacteria, notably Escherichia coli, Salmonella enterica serovar Typhimurium, and Vibrio cholerae, also include luxS homologs. All of these bacteria have been shown to produce active autoinducers capable of stimulating the expression of the luciferase operon in V. harveyi. In this report, we demonstrate that H. pylori also synthesizes a functional autoinducer (AI-2) that can specifically activate signaling system 2 in V. harveyi. Maximal activity is produced during early log phase, and the activity is diminished when cells enter stationary phase. We show that AI-2 is not involved in modulating any of the known or putative virulence factors in H. pylori and that a luxS null mutant has a two-dimensional protein profile identical to that of its isogenic parent strain. We discuss the implications of having an AI-2-like quorum-sensing system in H. pylori and suggest possible roles that it may play in H. pylori infection.  相似文献   

11.
12.
The ompS1 gene encodes a quiescent porin in Salmonella enterica serovars Typhi and Typhimurium. By using random mariner transposon mutagenesis, mutations that caused derepression of ompS1 expression were isolated, one in S. enterica serovar Typhi and two in S. enterica serovar Typhimurium. All of them mapped in the hns gene in the region coding for the carboxy terminus of the H-NS nucleoid protein. The derepressed ompS1 expression was subject to negative regulation at high osmolarity, both in the presence and in the absence of OmpR. This observation was possible due to the fact that there are two promoters: P1, which is OmpR dependent, and P2, which does not require OmpR for activation (rather, OmpR represses P2). The sequences upstream from position -88, a region previously shown to be involved in the negative regulation of ompS1, can form a static bend, and the integrity of this region was required for function and binding of H-NS and for osmoregulation, as determined with gene reporter fusions of different lengths and with a 31-bp deletion mutant. This is consistent with the notion that this region determines a structure required for repression. Hence, ompS1 shares negative regulation by H-NS with other loci, such as the bgl operon and the ade gene.  相似文献   

13.
14.
Z66 antigen-positive strains of Salmonella enterica serovar Typhi change flagellin expression in only one direction from the z66 antigen to the d or j antigen, which is different from the phase variation of S. enterica serovar Typhimurium. In the present study, we identified a new flagellin gene in z66 antigen-positive strains of S. enterica serovar Typhi. The genomic structure of the region containing this new flagellin gene was similar to that of fljBA operon of biphasic S. enterica serovars. A fljA-like gene was present downstream of the new flagellin gene. A rho-independent terminator was located between the new flagellin gene and the fljA-like gene. Hin-like gene was not present upstream of the new flagellin gene. We generated a mutant strain of S. enterica serovar Typhi, which carries a deletion of the new flagellin gene. Western blotting revealed that the 51-kDa z66 antigen protein was absent from the population of proteins secreted by the mutant strain. Southern hybridization demonstrated that the z66 antigen-positive strains of S. enterica serovar Typhi carried the new flagellin gene and fliC on two different genomic EcoRI fragments. When z66 antigen-positive strains were incubated with anti-z66 antiserum, the flagellin expression by S. enterica serovar Typhi changed from z66 antigen to j antigen. The new flagellin gene and the fljA-like gene were absent in the strain with altered flagellin expression. These results suggested that the new flagellin gene is a fljB-like gene, which encodes the z66 antigen of S. enterica serovar Typhi, and that deletion of fljBA-like operon may explain why S. enterica serovar Typhi alters the flagellin expression in only one direction from the z66 antigen to the d or j antigen.  相似文献   

15.
16.
17.
The Gifsy-2 temperate bacteriophage of Salmonella enterica serovar Typhimurium contributes significantly to the pathogenicity of strains that carry it as a prophage. Previous studies have shown that Gifsy-2 encodes SodCI, a periplasmic Cu/Zn superoxide dismutase, and at least one additional virulence factor. Gifsy-2 encodes a Salmonella pathogenicity island 2 type III secreted effector protein. Sequence analysis of the Gifsy-2 genome also identifies several open reading frames with homology to those of known virulence genes. However, we found that null mutations in these genes did not individually have a significant effect on the ability of S. enterica serovar Typhimurium to establish a systemic infection in mice. Using deletion analysis, we have identified a gene, gtgE, which is necessary for the full virulence of S. enterica serovar Typhimurium Gifsy-2 lysogens. Together, GtgE and SodCI account for the contribution of Gifsy-2 to S. enterica serovar Typhimurium virulence in the murine model.  相似文献   

18.
徐苹  杨晶  陆丽兰  冯尔玲  王恒樑  卢瑛  朱力 《遗传》2015,37(5):487-493
密度感应系统调节细菌应答反应的发生,这些应答反应与细胞密度有关。通过对比大肠杆菌(Escherichia coli)和志贺氏菌(Shigella spp.)的序列发现,志贺菌属密度感应系统操纵子普遍存在丢失或突变。为研究其密度感应系统的功能,文章利用哈氏弧菌(Vibrio harveyi)BB170作为指示菌,检测弗氏志贺菌(Shigella flexneri)密度感应系统信号分子AI-2,证明其可以分泌有活性的AI-2;其次,采用Golden Gate克隆法将大肠杆菌MG1655的密度感应系统基因克隆至弗氏志贺菌301中,获得密度感应系统回复株301。通过菌落计数表明,在混合培养条件下,密度感应系统基因回复株301比野生株301存在生长优势;通过双向电泳初步比较分析表明,密度感应系统基因可以在志贺菌中表达,并鉴定到了其他一些与应激反应相关的差异表达蛋白, 如Hsp60、GroEL、SodB。  相似文献   

19.
Food-borne illness caused by Salmonella enterica has been linked traditionally to poultry products but is associated increasingly with fresh fruits and vegetables. We have investigated the role of the production of autoinducer 2 (AI-2) in the ability of S. enterica serovar Thompson to colonize the chicken intestine and the cilantro phyllosphere. A mutant of S. enterica serovar Thompson that is defective in AI-2 production was constructed by insertional mutagenesis of luxS. The population size of the S. enterica serovar Thompson parental strain was significantly higher than that of its LuxS(-) mutant in the intestine, spleen, and droppings of chicks 12 days after their oral inoculation with the strains in a ratio of 1:1. In contrast, no significant difference in the population dynamics of the parental and LuxS(-) strain was observed after their inoculation singly or in mixtures onto cilantro plants. Digital image analysis revealed that 54% of S. enterica serovar Thompson cells were present in large aggregates on cilantro leaves but that the frequency distributions of the size of aggregates formed by the parental strain and the LuxS(-) mutant were not significantly different. Carbon utilization profiles indicated that the AI-2-producing strain utilized a variety of amino and organic acids more efficiently than its LuxS(-) mutant but that most sugars were utilized similarly in both strains. Thus, inherent differences in the nutrients available to S. enterica in the phyllosphere and in the chicken intestine may underlie the differential contribution of AI-2 synthesis to the fitness of S. enterica in these environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号