首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The F plasmid of Escherichia coli was used to study the genetic background of the control circuit in the bacteria that co-ordinates DNA replication and cell division of the host cells. When DNA replication of the F plasmid was blocked by growing cells carrying an amber-suppressible replication-defective F plasmid mutant under restrictive conditions, the cells continued to divide for about one generation until F plasmid was supposedly diluted to one copy per cell, and then they stopped dividing and formed non-septated filamentous cells. These observations suggest that completion of a round of replication is a necessary and sufficient condition of F DNA synthesis in the cell division of F+ bacteria; i.e. cell division of the F+ bacteria is coupled with DNA replication of the F plasmid. The observation that Giemsa-stainable materials in the filamentous cells were clustered in the center indicates that partitioning of chromosomal DNA (and presumably of F plasmid DNA) is also coupled with plasmid DNA replication. The function necessary for this coupling is carried by the 42.84-43.6 F (BamHI-PstI) segment, which is located outside the region essential for replication of the F plasmid. The nucleotide sequence demonstrates the existence of two open reading frames in this region, which encode polypeptides of 72 and 101 amino acids, respectively. These two reading frames are most likely to be transcribed as a single polycistronic message in the direction from the BamHI site at 42.84 F to the PstI site at 43.6 F. The expression of this "operon" is likely to be controlled by plasmid DNA replication.  相似文献   

2.
The genetic structure of the 42.84-43.6 F (BamHI-PstI) segment of the F plasmid, which contains all the F DNA sequences necessary for coupling cell division of F+ bacteria with plasmid DNA replication, was analyzed by isolating a series of amber mutants. Two cistrons were found in this region and they were designated letA and letD (an abbreviation for lethal mutation). The letA and letD cistrons were mapped on the 42.84-43.35 F (BamHI- XmaI ) segment and the 43.07-43.6 F (HincII-PstI) segment, respectively, and are presumed to correspond to the first (43.04-43.26 F) and second (43.26-43.57 F) open reading frames, respectively, which were found in this region by nucleotide sequencing. The letD gene product acts to inhibit cell division of the host bacteria and to induce prophages in lysogenic bacteria, whereas the letA gene product acts to suppress the activity of the letD gene product. Taking into consideration the fact that the 42.84-43.6 F segment carries all the F plasmid genes necessary for coupling cell division with plasmid DNA replication, and that the expression of the genes is likely to be controlled by plasmid DNA replication, we constructed the following hypothesis. Before completion of plasmid DNA replication, LetD protein acts to prevent cell division of the host bacteria. When plasmid DNA replication is completed, synthesis of LetA protein (and also LetD protein) takes place and the LetA protein synthesized acts to suppress the activity of LetD protein and make the cell ready for cell division. Actual cell division will take place when replication of both chromosomal and plasmid DNA is completed and the termination protein of the chromosome and the LetA protein of F plasmid are both synthesized. When cell division takes place LetA protein is consumed, and as a result LetD protein becomes active and prevents cell division until the next round of DNA replication is completed.  相似文献   

3.
S Chang  S Y Chang    O Gray 《Journal of bacteriology》1987,169(9):3952-3962
The Bacillus plasmid pLS11 partitions faithfully during cell division. Using a partition-deficient plasmid vector, we randomly cloned DNA fragments of plasmid pLS11 and identified the locus that regulates plasmid partition (par) by cis complementation in Bacillus subtilis. The cloned par gene conferred upon the vector plasmid a high degree of segregational stability. The par locus was mapped to a 167-base-pair segment on pLS11, and its nucleotide sequence was determined. The cloned par fragment regulated the partition of several different Bacillus replicons, and it only functioned in cis; it did not contain the replication function nor elevate the plasmid copy number in B. subtilis. The expression of par was orientation specific with respect to the replication origin on the same plasmid. We propose that the pLS11-derived par functions as a single-stranded site that interacts with other components involved in plasmid partition during cell division.  相似文献   

4.
The minimum pColV-K30 REPI region necessary for replication was located within a ca. 1.3-kilobase DNA segment. Adjacent to the essential replication sequences, there are two DNA regions that express incompatibility with plasmids containing the F secondary replicon of the F EcoRI fragment f7. One of these regions corresponds to incE, already described in that F plasmid fragment which expresses incompatibility with f7-containing plasmids. The other is a novel sequence that we designated incF, which confers incompatibility with REPI, P307, and f7 derivatives, cis-acting pColV-K30 sequences conferring stability to REPI-containing plasmids were also identified and localized noncontiguous to REPI, ca. 20 kilobases downstream from the aerobactin iron transport genes, which were thus flanked by REPI and its partition (par) sequences.  相似文献   

5.
F plasmid replication during the Escherichia coli division cycle was investigated by using the membrane-elution technique to produce cells labeled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The F plasmid replicated, like the minichromosome, during a restricted portion of the bacterial division cycle; i.e., F plasmid replication is cell-cycle specific. The F plasmid replicated at a different time during the division cycle than a minichromosome present in the same cell. F plasmid replication coincided with doubling in the rate of enzyme synthesis from a plasmid-encoded gene. When the cell cycle age of replication of the F plasmid was determined over a range of growth rates, the cell size at which the F plasmid replicated followed the same rules as did replication of the bacterial chromosome--initiation occurred when a constant mass per origin was achieved--except that the initiation mass per origin for the F plasmid was different from that for the chromosome origin. In contrast, the high-copy mini-R6K plasmid replicated throughout the division cycle.  相似文献   

6.
Effects of the ccd function of the F plasmid on bacterial growth.   总被引:38,自引:21,他引:17       下载免费PDF全文
A Jaff  T Ogura    S Hiraga 《Journal of bacteriology》1985,163(3):841-849
The ccd segment of the mini F plasmid containing the ccdA and ccdB genes controls the coordination between plasmid proliferation and cell physiology and fate. When the DNA replication of a thermosensitive-replication plasmid carrying the ccd segment of mini F is blocked, plasmid DNA molecules are progressively diluted through cell division until the copy number reaches 1 per cell. From this time on, there is little increase in the number of viable cells, although cells continue to divide, resulting in a mixed population of viable cells (mostly plasmid containing), nonviable but residually dividing cells, and nonviable nondividing cells. Results are presented suggesting that plasmid-containing cells are viable and continue to divide, whereas plasmid-free segregants are nonviable and form filaments after a few residual divisions, with DNA synthesis reduced or arrested in the filaments. Although the ccd functions are known to induce the SOS response when plasmid replication is blocked, the production of nonviable plasmid-free segregants is independent of the SOS cell division inhibition mechanism determined by the sfiA and sfiC genes.  相似文献   

7.
FtsH is an ATP-dependent protease that is essential for cell viability in Escherichia coli. The essential function of FtsH is to maintain the proper balance of biosynthesis of major membrane components, lipopolysaccharide and phospholipids. F plasmid uses a partitioning system and is localized at specific cell positions, which may be related to the cell envelope, to ensure accurate partitioning. We have examined the effects of ftsH mutations on the maintenance of a mini-F plasmid, and have found that temperature-sensitive ftsH mutants are defective in mini-F plasmid partition, but not replication, at permissive temperature for cell growth. A significant fraction of replicated plasmid molecules tend to localize close together on one side of the cell, which may result in failure to pass the plasmid to one of the two daughter cells upon cell division. By contrast, an ftsH null mutant carrying the suppressor mutation sfhC did not affect partitioning of the plasmid. The sfhC mutation also suppressed defective maintenance in temperature-sensitive ftsH mutants. Using this new phenotype caused by ftsH mutations, we also isolated a new temperature-sensitive ftsH mutant. Mutations in ftsH cause an increase in the lipopolysaccharide/ phospholipid ratio due to stabilization of the lpxC gene product, which is involved in lipopolysaccharide synthesis and is a substrate for proteolysis by the FtsH protease. It is likely that altered membrane structure affects the localization or activity of a putative plasmid partitioning apparatus located at positions equivalent to 1/4 and 3/4 of the cell length.  相似文献   

8.
Prophage lambda induction caused by mini-F plasmid genes   总被引:3,自引:0,他引:3  
Summary When bacterial cells harboring a temperaturesensitive replication plasmid, which carries the particular ccd segment of a mini-F plasmid, are transferred to 42°C, cell division is inhibited after incubation for an appropriate time. The inhibition occurs, when the copy number of the plasmid decreases to become critically low, about one per cell (Ogura and Hiraga 1983 b). In phage lysogens carrying this type of plasmid, the prophage is induced in a small portion of the cell population under the same conditions, in addition to the inhibition of cell division in most of cells. The prophage induction, but not the inhibition of normal cell division, depends on normal recA function. Both induction of prophage and inhibition of cell division are suppressed by the simultaneous presence of a replication proficient plasmid carrying the ccdA gene. We discuss molecular mechanisms of the ccd function that couples host cell division to plasmid proliferation and induces the prophage. Additionally, we propose a hypothesis that the ccd mechanism of F plasmid contributes to indirect induction of prophage by an F plasmid damaged by UV-irradiation and then introduced into a lysogen via conjugation.Abbreviations kb kilobase pairs. m.o.i., multiplicity of infection  相似文献   

9.
P1 plasmid replication: replicon structure   总被引:21,自引:0,他引:21  
Bacteriophage P1 lysogenizes Escherichia coli as a unit-copy plasmid. We have undertaken to define the plasmid-encoded elements implicated in P1 plasmid maintenance. We show that a 2081 base-pair fragment of the 90,000 base P1 plasmid confers the capacity for controlled plasmid replication. DNA sequence analysis reveals several open reading frames in this fragment. The largest is shown to encode a 32,000 Mr protein required for plasmid replication. The corresponding gene, repA, has been identified genetically. A set of five 19 base-pair repeats is located upstream from repA; a set of nine similar repeats is located immediately downstream from repA. Each set of repeats, when cloned into pBR322, exerts incompatibility towards a P1 replicon. The upstream set, designated incC, consists of direct repeats that are spaced about two turns of the DNA helix apart; the downstream set, designated incA, consists of nine repeats arranged three in one orientation and six in the other. Spacing between incA repeats were three or four turns of the helix apart. The organization of the plasmid maintenance regions of P1 and the unit-copy sex factor plasmid, F, is strikingly similar. Although the DNA sequences of this region in the two plasmids exhibit little homology, a 9 base-pair sequence that appears four times in the origin region of members of the Enterobacteriaceae also occurs twice as direct repeats in similar positions in P1 and F. This sequence, where it occurs in E. coli, has been postulated to be the binding site for the essential replication protein determined by dnaA. The dnaA protein appears not to be essential for the replication of either plasmid; therefore, the function of the sequence in P1 and F may be regulatory.  相似文献   

10.
The P1 plasmid partition system is responsible for segregation of daughter plasmids during division of the Escherichia coli host cell. The P1-encoded elements consist of two essential proteins, ParA and ParB, and the cis-acting incB region. The incB region determines partition-mediated incompatibility and contains the centromere-like site parS. We have isolated and purified the two proteins. ParB binds specifically to the incB region in vitro. DNase I footprinting assays place a strong binding site over the 35-bp parS sequence previously shown to be sufficient for partition when the Par proteins are supplied in trans. A weaker site lies within the incB region in sequences that are important for specifying incompatibility, but are not essential for partition. Gel band retardation assays show that a host factor binds specifically to the incB sequence. The factor strongly stimulates binding of ParB. Cutting the region at a site between the two ParB binding sites yields two fragments that can bind ParB but not host factor. Thus, information for host-factor binding lies in the region determining the specificity of plasmid incompatibility. The roles of parB and the host factor in partition and the specificity of plasmid incompatibility are discussed.  相似文献   

11.
This paper reports the characterization of a new locus, vagC/vagD, on the virulence plasmid of Salmonella dublin. Strain G19, harbouring a TnA insertion in vagC, exhibited reduced virulence although vagC was outside the 8 kb essential virulence region. G19 was also unable to grow on minimal-medium containing various sole carbon/energy sources, unlike the wild-type and plasmid-cured strains. Sequencing of the locus revealed the presence of two ORFs (vagC and vagD) which overlapped by one nucleotide. The VagC polypeptide (12 kDa) was observed using minicell expression. Results indicated that vagD was responsible for the phenotypic differences observed between the wild type and G19, and that vagC modulated the activity of vagD. Furthermore, microscopic analysis of G19 cells harvested from minimal-medium plates showed that a high proportion of cells were elongated, which suggested that vagC and vagD might be involved in coordination of plasmid replication with cell division. We propose that vagD, under certain environmental conditions, acts to prevent cell division until plasmid replication is complete, thus aiding plasmid maintenance. vagC and vagD are absent from the related virulence plasmid of Salmonella typhimurium.  相似文献   

12.
DNA segregation, or partition, ensures stable genome transmission during cell division. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to decipher the molecular underpinnings of this process. Plasmid partition is mediated by par systems, composed of three essential elements: a centromere-like site and the proteins ParA and ParB. In the first step, ParB binds the centromere to form a large segrosome. Subsequently, ParA, an ATPase, binds the segrosome and mediates plasmid separation. Recently determined ParB-centromere structures have revealed key insights into segrosome assembly, whereas ParA structures have shed light on the mechanism of plasmid separation. These structures represent important steps in elucidating the molecular details of plasmid segregation.  相似文献   

13.
Plasmids have cell cycle replication patterns that need to be considered in models of their replication dynamics. To compare current theories for control of plasmid replication with experimental data for timing of plasmid replication with the cell cycle, a Monte Carlo simulation of plasmid replication and partition was developed. High-copy plasmid replication was simulated by incorporating equations previously developed from the known molecular biology of ColE1-type plasmids into the cell-cycle simulation. Two types of molecular mechanisms for low-copy plasmid replication were tested: accumulation of an initiator protein in proportion to cell mass and binding of the plasmid origin to the cell membrane. The low-copy plasmids were partitioned actively, with a specific mechanism to mediate the transfer from mother to daughter cells, whereas the high-copy plasmids were partitioned passively with cell mass.The simulation results and experimental data demonstrate cell-cycle-specific replication for the low-copy F plasmid and cell-cycle-independent replication for the high-copy pBR322, ColBM, and R6K plasmids. The simulation results indicate that synchronous replication at multiple plasmid origins is critical for the cell-cycle-specific pattern observed in rapidly growing cells. Variability in the synchrony of initiation of multiple plasmid origins give rise to a cell-cycle-independent pattern and is offered as a plausible explanation for the controversy surrounding the replication pattern of the low-copy plasmids. A comparison of experimental data and simulation results for the low-copy F plasmid at several growth rates indicates that either initiation mechanism would be sufficient to explain the timing of replication with the cell cycle. The simulation results also demonstrate that, although cell-cycle-specific and cell-cycle independent replication patterns give rise to very different gene-expression patterns during short induction periods in age-selected populations, long-term expression of genes encoded on low-copy and high-copy plasmids in exponentially growing cells have nearly the same patterns. These results may be important for the future use of low-copy plasmids as expression vectors and validate the use of simpler models for high-copy plasmids that do not consider cell-cycle phenomena. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Summary An analysis was carried out on the replication functions within a 2.3 kilobase (kb) segment of the F plasmid which contains an origin (ori S) of replication and is capable of autonomous replication inEscherichia coli. Two separable regions were delineated for this segment: an origin region of approximately 1,140 bp in length and a segment of approximately 1,400 bp that functionsin trans to support replication of the origin region. The trans-acting segment is functional as part of an F replicon or when inserted into theE. coli chromosome. A prominent feature of the trans-acting segment is a coding sequence for a 29 K protein (Murotsu et al. 1981).  相似文献   

15.
XerC is a site-specific recombinase of the bacteriophage lambda integrase family that is encoded by xerC at 3700 kbp on the genetic map of Escherichia coli. The protein was originally identified through its role in converting multimers of plasmid ColE1 to monomers; only monomers are stably inherited. Here we demonstrate that XerC also has a role in the segregation of replicated chromosomes at cell division. xerC mutants form filaments with aberrant nucleotides that appear unable to partition correctly. A DNA segment (dif) from the replication terminus region of the E. coli chromosome binds XerC and acts as a substrate for XerC-mediated site-specific recombination when inserted into multicopy plasmids. This dif segment contains a region of 28 bp with sequence similarity to the crossover region of ColE1 cer. The cell division phenotype of xerC mutants is suppressed in strains deficient in homologous recombination, suggesting that the role of XerC/dif in chromosomal metabolism is to convert any chromosomal multimers (arising through homologous recombination) to monomers.  相似文献   

16.
On plasmid incompatibility   总被引:31,自引:0,他引:31  
In this paper is presented a brief review of the current state of information on plasmid incompatibility followed by a detailed mathematical model dealing with incompatibility between autonomous homogenic plasmids and based on the assumption that the intracellular plasmid copy pool is randomized with respect to assortment during cell division. Two cases are considered: one in which each plasmid copy replicates once in each generation of cell growth (regular replication) and one in which plasmids are chosen at random for replication from a common pool, irrespective of their replication history (random replication). In both cases, it is assumed that the partition of plasmid copies to daughter cells at cell division is regular—existing plasmid copies are divided equally among the two daughter cells (equipartition). In the case of regular replication coupled with equipartition, it is shown that the survival of heteroplasmid cells (cells containing at least one copy of each of two incompatible plasmids) during exponential growth in a nonselective medium is given by H = H0[1 − 1/(2N − 1)]n, where H0 and H are the numbers of heteroplasmid cells after 0 and n generations of growth, respectively, and N is the plasmid copy number in newborn cells. In the second case, (random replication-equipartition), it is shown that the survival of the heteroplasmid population during exponential growth under nonselective conditions is given by H = H0[(N − 1)(2N + 1)/(2N − 1)(N + 1)n. Sample calculations are presented to show that segregation is more rapid in the latter than in the former case. Finally, some of the plasmid-linked genetic determinants that might be expected to affect the expression of incompatibility between nonisogenic plasmids are briefly considered. These determinants include recognition specificity for replication origins, recognition specificity, specific activity of copy number control systems, and recognition specificity of partition systems.  相似文献   

17.
18.
Li Y  Austin S 《Plasmid》2002,48(3):174-178
The prophage of bacteriophage P1 is a low copy number plasmid in Escherichia coli and is segregated to daughter cells by an active partition system. The dynamics of the partition process have now been successfully followed by time-lapse photomicroscopy. The process appears to be fundamentally different from that previously inferred from statistical analysis of fixed cells. A focus containing several plasmid copies is captured at the cell center. Immediately before cell division, the copies eject bi-directionally along the long axis of the cell. Cell division traps one or more plasmid copies in each daughter cell. These copies are free to move, associate, and disassociate. Later, they are captured to the new cell center to re-start the cycle. Studies with mutants suggest that the ability to segregate accurately at a very late stage in the cell cycle is dependent on a novel ability of the plasmid to control cell division. Should segregation be delayed, cell division is also delayed until segregation is successfully completed.  相似文献   

19.
The stable maintenance of the unit-copy lambda-P1:5R miniplasmid is dependent on adjacent but separable replication (rep) and partition (par) regions of DNA derived from its P1 plasmid parent. The par region consists of an approximately 2.5 X 10(3) base-pair (kb) segment of DNA of which the terminal kb contains the plasmid incompatibility determinant incB. Two of the 14 lambda-P1:5R partition-defective point mutants isolated are amber (nonsense) mutants, showing that a plasmid-encoded protein is essential for proper partition. All of the Par- point mutants are complemented by the wild-type par region in trans. The complementing activity was shown to be an Mr 44,000 protein encoded by the end of the par region distal to incB. Deletion analysis showed that the incB sequence is essential in cis to the plasmid in order that the plasmid be receptive to the par protein. Thus incB appears to be the target site for par protein activity. We propose that the protein binds to incB, forming a complex that is recognized as a substrate for the cellular partition apparatus. The ability of a cloned incB sequence to compete for the par protein or for the cellular partition apparatus accounts for its activity as an incompatibility determinant. The existence of a plasmid-encoded par protein suggests a specific model for equipartition.  相似文献   

20.
We report here that the Escherichia coli replication proteins DnaA, which is required to initiate replication of both the chromosome and plasmid pSC101, and DnaB, the helicase that unwinds strands during DNA replication, have effects on plasmid partitioning that are distinct from their functions in promoting plasmid DNA replication. Temperature-sensitive dnaB mutants cultured under conditions permissive for DNA replication failed to partition plasmids normally, and when cultured under conditions that prevent replication, they showed loss of the entire multicopy pool of plasmid replicons from half of the bacterial population during a single cell division. As was observed previously for DnaA, overexpression of the wild-type DnaB protein conversely stabilized the inheritance of partition-defective plasmids while not increasing plasmid copy number. The identification of dnaA mutations that selectively affected either replication or partitioning further demonstrated the separate roles of DnaA in these functions. The partition-related actions of DnaA were localized to a domain (the cell membrane binding domain) that is physically separate from the DnaA domain that interacts with other host replication proteins. Our results identify bacterial replication proteins that participate in partitioning of the pSC101 plasmid and provide evidence that these proteins mediate plasmid partitioning independently of their role in DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号