首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Host control of influenza A virus (IAV) is associated with exuberant pulmonary inflammation characterized by the influx of myeloid cells and production of proinflammatory cytokines including interferons (IFNs). It is unclear, however, how the immune system clears the virus without causing lethal immunopathology. Here, we demonstrate that in addition to its known anti-viral activity, STAT1 signaling coordinates host inflammation during IAV infection in mice. This regulatory mechanism is dependent on both type I IFN and IFN-γ receptor signaling and, importantly, requires the functional interplay between the two pathways. The protective function of type I IFNs is associated with not only the recruitment of classical inflammatory Ly6Chi monocytes into IAV-infected lungs, but also the prevention of excessive monocyte activation by IFN-γ. Unexpectedly, type I IFNs preferentially regulate IFN-γ signaling in Ly6Clo rather than inflammatory Ly6Chi mononuclear cell populations. In the absence of type I IFN signaling, Ly6Clo monocytes/macrophages, become phenotypically and functionally more proinflammatory than Ly6Chi cells, revealing an unanticipated function of the Ly6Clo mononuclear cell subset in tissue inflammation. In addition, we show that type I IFNs employ distinct mechanisms to regulate monocyte and neutrophil trafficking. Type I IFN signaling is necessary, but not sufficient, for preventing neutrophil recruitment into the lungs of IAV-infected mice. Instead, the cooperation of type I IFNs and lymphocyte-produced IFN-γ is required to regulate the tissue neutrophilic response to IAV. Our study demonstrates that IFN interplay links innate and adaptive anti-viral immunity to orchestrate tissue inflammation and reveals an additional level of complexity for IFN-dependent regulatory mechanisms that function to prevent excessive immunopathology while preserving anti-microbial functions.  相似文献   

2.
Here we show that low-dose cyclophosphamide (CY), that depends for its therapeutic effectiveness on the immunopotentiating activity of the drug for T cell-mediated tumor-eradicating immunity, is curative for ~80% of wild-type (WT) mice bearing a large s.c. MOPC-315 tumor, but only for ~10% of IFN-α/βR−/− mice bearing a large s.c. MOPC-315 tumor. Histopathological examination of the s.c. tumors of such mice on day 4 after the chemotherapy revealed that the low dose of CY led to accumulation of T lymphocytes in both the WT and the IFN-α/βR−/− mice. However, in the CY treated tumor bearing WT mice the T lymphocytes were present throughout the tumor mass and in direct contact with tumor cells, but in the CY treated tumor bearing IFN-α/βR−/− mice most of the T lymphocytes remained in blood vessels. In addition to being important for CY-induced transendothelial migration of T lymphocytes into the tumor mass, we show here that signaling via the IFN-α/βR is also important for CY-induced control of metastatic tumor progression in the spleen and liver of the tumor bearing mice. Finally, CY cured tumor bearing WT mice were resistant to a subsequent challenge with MOPC-315 tumor cells, but the few CY cured tumor bearing IFN-α/βR−/− mice were not. Thus, signaling via the IFN-α/βR on host cells in MOPC-315 tumor bearers is important for CY-induced: (a) transendothelial migration of T lymphocytes into the tumor mass and the eradication of the primary tumor, (b) control of metastatic tumor progression, and (c) resistance to a subsequent tumor challenge. This work was supported by Research Grant 03-19 from the American Cancer Society-Illinois Division.  相似文献   

3.
Interferons (IFNs) have been tested for the therapeutic effects in various types of malignancy, but mechanisms of the anti-tumors effects and the differential biological activities among IFN members are dependent on respective cell types. In this study, we examined growth inhibitory activities of type I and III IFNs on 5 kinds of human mesothelioma cells bearing wild-type p53 gene, and showed that type I IFNs but not type III IFNs decreased the cell viabilities. Moreover, growth inhibitory activities and up-regulated expression levels of the major histocompatibility complexes class I antigens were greater with IFN-β than with IFN-α treatments. Cell cycle analyses demonstrated that type I IFNs increased S- and G2/M-phase populations, and subsequently sub-G1-phase fractions. The cell cycle changes were also greater with IFN-β than IFN-α treatments, and these data collectively showed that IFN-β had stronger biological activities than IFN-α in mesothelioma. Type I IFNs-treated cells increased p53 expression and the phosphorylation levels, and activated apoptotic pathways. A combinatory use of IFN-β and cisplatin or pemetrexed, both of which are the current first-line chemotherapeutic agents for mesothelioma, produced synergistic anti-tumor effects, which were also evidenced by increased sub-G1-phase fractions. These data demonstrated firstly to our knowledge that IFN-β produced synergistic anti-tumor effects with cisplatin or pemetrexed on mesothelioma through up-regulated p53 expression.  相似文献   

4.
5.
Type I interferon (IFN) possesses antiviral and antitumor activities and also having an immune regulatory effect, activating cellular immune response and upregulating several cytokines. Recent study has shown that type I IFN upregurates the dendritic cell production of IL-15 capable of activating natural killer cells and CD8+ memory T lymphocytes. However, it is still unknown if type I IFN induces IL-15 production in non-immune cells and if type I IFN affects IL-15 production in vivo. The present study investigated the effect of type I IFNs on IL-15 expression in hepatocellular carcinoma (HCC) cell lines in vitro and in patients with chronic hepatitis C in vivo. When three HCC cell lines, Huh7, HepG2, and JHH4 were cultured in vitro, IFN upregulation of IL-15 expression was observed at both the mRNA and protein levels. In experiments using Huh7 cells, upregulation of IL-15 expression occurred within 24 h of the start of IFN stimulation, and both IFN-α and -β dose-dependently increased IL-15 production in the range from 100 U/ml to 10,000 U/ml of concentration. IFN-β showed stronger activity in IL-15 production induction in vitro than IFN-α. For in vivo examination, sera were obtained from 21 chronic hepatitis C patients treated with IFN and 29 healthy individuals, and the serum IL-15 level was quantified by ELISA. The serum IL-15 level of chronic hepatitis C patients before IFN treatment was similar to that of the healthy controls and significantly increased only during the IFN administration period. These results confirm that IFN-α/β induce IL-15 production and also suggest that IL-15 may be associated with type I IFN-induced immune response.  相似文献   

6.
To investigate the effect of apolipoprotein E (apoE) on cytokine expression profile of the liver of young mice, quantitative RT-PCR (qRT-PCR) assay and cytokine antibody array for multiplex analysis of 62 cytokines have been used to analyze characteristics of expression of cytokines in the liver of 6-week-old apoE-null (apoE−/−) mice. The levels of plasma cytokines were also analyzed. The mRNA level of IL-1β, IL-2, IL-6, ICAM-1, VCAM-1, MCP-1, NF-κB (p65), IFN-γ and IκB-α were increased significantly in apoE−/− mice comparative to wild-type (WT) mice. IL-4, IL-10 and GM-CSF, however, were slightly decreased. Compared with WT, levels of 21 cytokines altered twofold or more in apoE−/− mice, including 10 cytokines increased and 11 decreased. Expression patterns of IL-1β, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ and VCAM-1 showed identical trend between cytokine antibody array and qRT-PCR analysis. Moreover, levels of IL-1β, IFN-γ and IL-6 in the plasma were elevated, while IL-4 was lightly decreased in apoE−/− mice compared to those in WT mice. These results implied that promotion of type I immune response in the liver of young apoE−/− mice due to alteration of these cytokines, and the phenotypes may be caused by the regulation of NF-κB. The inflammation and lipid metabolism dysfunction in the liver cooperated in dysfunction of the liver in young apoE−/− mice.  相似文献   

7.
Toll-like receptors (TLRs) and retinoic acid-inducible gene I-like helicases (RLHs) are two major machineries recognizing RNA virus infection of innate immune cells. Intracellular signaling for TLRs and RLHs is mediated by their cytoplasmic adaptors, i.e., MyD88 or TRIF and IPS-1, respectively. In the present study, we investigated the contributions of TLRs and RLHs to the cytotoxic T-lymphocyte (CTL) response by using lymphocytoid choriomeningitis virus (LCMV) as a model virus. The generation of virus-specific cytotoxic T lymphocytes was critically dependent on MyD88 but not on IPS-1. Type I interferons (IFNs) are known to be important for the development of the CTL response to LCMV infection. Serum levels of type I IFNs and proinflammatory cytokines were mainly dependent on the presence of MyD88, although IPS-1−/− mice showed a decrease in IFN-α levels but not in IFN-β and proinflammatory cytokine levels. Analysis of Ifna6+/GFP reporter mice revealed that plasmacytoid dendritic cells (DCs) are the major source of IFN-α in LCMV infection. MyD88−/− mice were highly susceptible to LCMV infection in vivo. These results suggest that recognition of LCMV by plasmacytoid DCs via TLRs is responsible for the production of type I IFNs in vivo. Furthermore, the activation of a MyD88-dependent innate mechanism induces a CTL response, which eventually leads to virus elimination.  相似文献   

8.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-α, IFN-β and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-λ uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR10/0) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-λ might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-λ readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR10/0 mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-λ failed to induce Mx1 in the liver of IFNAR10/0 mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-λ receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-α/β and IFN-λ were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR10/0 mice. From these results we conclude that IFN-λ contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

9.
Interferon-alpha (IFN-α) is an immunomodulatory cytokine that is used clinically for the treatment of melanoma in the adjuvant setting. The cellular actions of IFN-α are regulated by the suppressors of cytokine signaling (SOCS) family of proteins. We hypothesized that the anti-tumor activity of exogenous IFN-α would be enhanced in SOCS1-deficient mice. SOCS1-deficient (SOCS1−/−) or control (SOCS1+/+) mice on an IFN-γ−/− C57BL/6 background bearing intraperitoneal (i.p.) JB/MS murine melanoma cells were treated for 30 days with i.p. injections of IFN-A/D or PBS (vehicle). Log-rank Kaplan-Meier survival curves were used to evaluate survival. Tumor-bearing control SOCS1+/+ mice receiving IFN-A/D had significantly enhanced survival versus PBS–treated mice (P = 0.0048). The anti-tumor effects of IFN-A/D therapy were significantly enhanced in tumor-bearing SOCS1−/− mice; 75% of these mice survived tumor challenge, whereas PBS-treated SOCS1−/− mice all died at 13-16 days (P = 0.00038). Antibody (Ab) depletion of CD8+ T cells abrogated the anti-tumor effects of IFN-A/D in SOCS1−/− mice as compared with mice receiving a control antibody (P = 0.0021). CD4+ T-cell depletion from SOCS1−/− mice also inhibited the effects of IFN-A/D (P = 0.0003). IFN-A/D did not alter expression of CD80 or CD86 on splenocytes of SOCS1+/+ or SOCS1−/− mice, or the proportion of T regulatory cells or myeloid-derived suppressor cells in SOCS1+/+ or SOCS1−/− mice. An analysis of T-cell function did reveal increased proliferation of SOCS1-deficient splenocytes at baseline and in response to mitogenic stimuli. These data suggest that modulation of SOCS1 function in T-cell subsets could enhance the anti-tumor effects of IFN-α in the setting of melanoma.  相似文献   

10.
Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/β), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.  相似文献   

11.
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation.  相似文献   

12.
Tumor associated macrophages (TAM) can promote angiogenesis, invasiveness and immunosuppression. The cytokine CSF-1 (or M-CSF) is an important factor of TAM recruitment and differentiation and several pharmacological agents targeting the CSF-1 receptor (CSF-1R) have been developed to regulate TAM in solid cancers. We show that the kinase inhibitor PLX3397 strongly dampened the systemic and local accumulation of macrophages driven by B16F10 melanomas, without affecting Gr-1+ myeloid derived suppressor cells. Removal of intratumoral macrophages was remarkably efficient and a modest, but statistically significant, delay in melanoma outgrowth was observed. Importantly, CSF-1R inhibition strongly enhanced tumor control by immunotherapy using tumor-specific CD8 T cells. Elevated IFNγ production by T cells was observed in mice treated with the combination of PLX3397 and immunotherapy. These results support the combined use of CSF-1R inhibition with CD8 T cell immunotherapy, especially for macrophage-stimulating tumors.  相似文献   

13.
Interferons (IFNs) are a critical component of the first line of antiviral defense. The activation of Toll-like receptors (TLRs) expressed by dendritic cells triggers different signaling cascades that result in the production of large amounts of IFNs. However, the functional consequences of TLR activation and differential IFN production in specific cell populations other than antigen-presenting cells have not yet been fully elucidated. In this study, we investigated TLR expression and polarization in airway epithelial cells (AECs) and the consequences of TLR agonist stimulation for the production of type I (IFN-α/β) and type III (IFN-λ) IFNs. Our results show that the pattern of expression and polarization of all TLRs in primary AEC cultures mirrors that of the human airways ex vivo and is receptor specific. The antiviral TLRs (TLR3, TLR7, and TLR9) are mostly expressed on the apical cell surfaces of epithelial cells in the human trachea and in primary polarized AECs. Type III IFN is the predominant IFN produced by the airway epithelium, and TLR3 is the only TLR that mediates IFN production by AECs, while all TLR agonists tested are capable of inducing AEC activation and interleukin-8 production. In response to influenza virus infection, AECs can produce IFN-λ in an IFNAR- and STAT1-independent manner. Our results emphasize the importance of using primary well-differentiated AECs to study TLR and antiviral responses and provide further insight into the regulation of IFN production during the antiviral response of the lung epithelium.  相似文献   

14.
Adaptive immunity in response to virus infection involves the generation of Th1 cells, cytotoxic T cells, and antibodies. This type of immune response is crucial for the clearance of virus infection and for long-term protection against reinfection. Type I interferons (IFNs), the primary innate cytokines that control virus growth and spreading, can influence various aspects of adaptive immunity. The development of antiviral immunity depends on many viral and cellular factors, and the extent to which type I IFNs contribute to the generation of adaptive immunity in response to a viral infection is controversial. Using two strains (Cantell and 52) of the murine respiratory Sendai virus (SeV) with differential abilities to induce type I IFN production from infected cells, together with type I IFN receptor-deficient mice, we examined the role of type I IFNs in the generation of adaptive immunity. Our results show that type I IFNs facilitate virus clearance and enhance the migration and maturation of dendritic cells after SeV infection in vivo; however, soon after infection, mice clear the virus from their lungs and efficiently generate cytotoxic T cells independently of type I IFN signaling. Furthermore, animals that are unresponsive to type I IFN develop long-term anti-SeV immunity, including CD8+ T cells and antibodies. Significantly, this memory response is able to protect mice against challenge with a lethal dose of virus. In conclusion, our results show that primary and secondary anti-SeV adaptive immunities are developed normally in the absence of type I IFN responsiveness.  相似文献   

15.
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets'' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.  相似文献   

16.
Interleukin (IL)-15 associates with IL-15Rα on the cell surface where it can be cleaved into soluble cytokine/receptor complexes that have the potential to stimulate CD8 T cells and NK cells. Unfortunately, little is known about the in vivo production of soluble IL-15Rα/IL-15 complexes (sIL-15 complexes), particularly regarding the circumstances that induce them and the mechanisms responsible. The main objective of this study was to elucidate the signals leading to the generation of sIL-15 complexes. In this study, we show that sIL-15 complexes are increased in the serum of mice in response to Interferon (IFN)-α. In bone marrow derived dendritic cells (BMDC), IFN-α increased the activity of ADAM17, a metalloproteinase implicated in cleaving IL-15 complexes from the cell surface. Moreover, knocking out ADAM17 in BMDCs prevented the ability of IFN-α to induce sIL-15 complexes demonstrating ADAM17 as a critical protease mediating cleavage of IL-15 complexes in response to type I IFNs. Type I IFN signaling was required for generating sIL-15 complexes as in vivo induction of sIL-15 complexes by Poly I:C stimulation or total body irradiation (TBI) was impaired in IFNAR-/- mice. Interestingly, serum sIL-15 complexes were also induced in mice infected with Vesicular stomatitis virus (VSV) or mice treated with agonistic CD40 antibodies; however, sIL-15 complexes were still induced in IFNAR-/- mice after VSV infection or CD40 stimulation indicating pathways other than type I IFNs induce sIL-15 complexes. Overall, this study has shown that type I IFNs, VSV infection, and CD40 stimulation induce sIL-15 complexes suggesting the generation of sIL-15 complexes is a common event associated with immune activation. These findings reveal an unrealized mechanism for enhanced immune responses occurring during infection, vaccination, inflammation, and autoimmunity.  相似文献   

17.

Background & Aims

The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV).

Methods

This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice.

Results

Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways.

Conclusions

These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.  相似文献   

18.
19.
Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1?/?) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell‐to‐cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin‐based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.  相似文献   

20.
The effect of several plant growth regulators on the number of tumors developing on potato tuber discs (Solatium tuberosum L. cv. Radka) inoculated withAgrobacterium tumefaciens, strain C 58 was studied. The plant growth regulators used in appropriate range of concentrations stimulated the formation of tumors byA. tumefaciens. Naphthaleneacetic acid (NAA) was most active in concentration of 10−4 mg ml−1. Kinetin gave a biphasic response with optimal promotions of tumor initiation at 10−4 − 2 × 10−3 mg ml−1. High kinetin concentration (10−1 mg ml−1) inhibited the formation of tumors completely. Indoleacetic acid (IAA) stimulated the initiation of tumors in the same range of concentrations as kinetin, except that very high concentrations did not inhibit but enhanced tumor formation. 2,4-diehlorphenoxyacetic acid (2,4-D) showed a biphasic response with maxima in 10−4 mg ml−1 and 10−1 mg ml−1. All the tumors scored for nopaline production showed nopaline synthase activity independently whether their formation was stimulated by l0−1 mg ml−1 IAA or they were initiated without any treatment by plant growth regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号