首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 and Th17 cell-mediated autoimmune disease of the CNS. IDO and tryptophan metabolites have inhibitory effects on Th1 cells in EAE. For Th17 cells, IDO-mediated tryptophan deprivation and small molecule halofuginone-induced amino acid starvation response were shown to activate general control nonrepressed 2 (GCN2) kinase that directly or indirectly inhibits Th17 cell differentiation. However, it remains unclear whether IDO and tryptophan metabolites impact the Th17 cell response by mechanisms other than the GCN2 kinase pathway. In this article, we show that IDO-deficient mice develop exacerbated EAE with enhanced encephalitogenic Th1 and Th17 cell responses and reduced regulatory T cell (Treg) responses. Administration of the downstream tryptophan metabolite 3-hydroxyanthranillic acid (3-HAA) enhanced the percentage of Tregs, inhibited Th1 and Th17 cells, and ameliorated EAE. We further demonstrate that Th17 cells are less sensitive to direct suppression by 3-HAA than are Th1 cells. 3-HAA treatment in vitro reduced IL-6 production by activated spleen cells and increased expression of TGF-β in dendritic cells (DCs), which correlated with enhanced levels of Tregs, suggesting that 3-HAA-induced Tregs contribute to inhibition of Th17 cells. By using a DC-T cell coculture, we found that 3-HAA-treated DCs expressed higher levels of TGF-β and had properties to induce generation of Tregs from anti-CD3/anti-CD28-stimulated naive CD4(+) T cells. Thus, our data support the hypothesis that IDO induces the generation of Tregs via tryptophan metabolites, such as 3-HAA, which enhances TGF-β expression from DCs and promotes Treg differentiation.  相似文献   

2.
Human autoimmune diseases are characterized by systemic T cell dysfunction, resulting in chronically activated Th1 and Th17 cells that are inadequately suppressed by regulatory T cells (Tregs). IL-6, which is overexpressed in tissue and serum of patients with autoimmune diseases, inhibits human Treg function. We sought to determine the mechanism for the antitolerogenic properties of IL-6 by examining the signaling pathways downstream of IL-6R in primary human T cells. Inhibition of Stat3 signaling in MLCs containing IL-6 restores Treg-mediated suppression, demonstrating that IL-6-mediated loss of Treg suppression requires phosphorylation of Stat3. Cultures in which either effector T cells (Teffs) or Tregs were pretreated with Stat3 inhibitors indicate that phosphorylated (p)Stat3 is required in both T cell populations for IL-6-mediated reversal of Treg function. IL-21, which signals preferentially through pStat3, also reverses Treg suppression, in contrast to IL-27 and IFN-γ, which signal preferentially through Stat1 and do not inhibit Treg function. Interestingly, both Teffs and Tregs respond to IL-6 stimulation through strong Stat3 phosphorylation with minimal MAPK/Erk activation and moderate Stat1 phosphorylation. Finally, Teffs stimulated strongly through the TCR are also resistant to suppression by Tregs and show concurrent Stat3 phosphorylation. In these cultures, inhibition of pStat3 restores functional suppression by Tregs. Taken together, our findings suggest that an early dominance of Stat3 signaling, prior to subsequent T cell activation, is required for the loss of functional Treg suppression and that kinase-specific inhibitors may hold therapeutic promise in the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

3.
Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cytokine secretion from DCs may potentially regulate Th differentiation/activation. DCs also induce de-novo generation of regulatory T cells (Treg) that modulate the immune response. In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 agonist. This down-regulation of IL-12 was neither due to a direct suppression of its production by the DCs nor a result of marked DC death. We found that IL-12 was rather actively consumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells. Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell proliferation and Th1 activation. These results provide a new pathway of Th1 response regulation where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing Th1 mediated autoimmunity.  相似文献   

4.
An association between inducible costimulator ligand (ICOS-L) expression and interleukin (IL)-10 production by dendritic cells (DCs) has been commonly found in infectious disease. DCs with higher ICOS-L expression and IL-10 production are reportedly more efficient in inducing regulatory T cells (Tregs). Here we use the Chlamydia muridarum (Cm) lung infection model in IL-10 knockout (KO) mice to test the relationship between IL-10 production and ICOS-L expression by DCs. We examined ICOS-L expression, the development of T-cell subsets, including Treg, Th17 and Th1 cell, in the background of IL-10 deficiency and its relationship with ICOS-L/ICOS signaling after infection. Surprisingly, we found that the IL-10 KO mice exhibited significantly higher ICOS-L expression by DCs. Moreover, IL-10 KO mice showed lower Tregs but higher Th17 and Th1 responses, but only the Th17 response depended on ICOS signaling. Consistently, most of the Th17 cells were ICOS+, whereas most of the Th1 cells were ICOS in the infected mice. Furthermore, neutralization of IL-17 in IL-10 KO mice significantly exacerbated lung infection. The data suggest that ICOS-L expression on DC may be negatively regulated by IL-10 and that ICOS-L expression on DC in the presence or absence of IL-10 costimulation may promote Treg or Th17 response, without significant impact on Th1.  相似文献   

5.
CD25(+)CD4(+) regulatory T cells (Tregs) are required for the maintenance of peripheral tolerance to certain self Ags. In this study, the requirements for murine Treg-suppressive activity and proliferation were examined in the context of the maturation of myeloid dendritic cells (DCs). We find that the suppressive function of Tregs is critically dependent on immature DCs and is readily reversed by the maturation of DCs induced by GM-CSF, but does not require TLR activation of either DCs or Tregs. In contrast, reversal of Treg anergy is dependent on TLR activation of DCs, and involves the potentiation of Treg responsiveness to IL-2 by cooperative effects of IL-6 and IL-1, both of which are produced by TLR-activated, mature DCs. Thus, proinflammatory cytokines produced by TLR-activated, mature DCs are required for reversal of Treg anergy, but are not required to overcome Treg suppression.  相似文献   

6.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are required to restrain the immune system from mounting an autoaggressive systemic inflammatory response, but why their activity can prevent (or allow) organ-specific autoimmunity remains poorly understood. We have examined how TCR specificity contributes to Treg activity using a mouse model of spontaneous autoimmune arthritis, in which CD4(+) T cells expressing a clonotypic TCR induce disease by an IL-17-dependent mechanism. Administration of polyclonal Tregs suppressed Th17 cell formation and prevented arthritis development; notably, Tregs expressing the clonotypic TCR did not. These clonotypic Tregs exerted Ag-specific suppression of effector CD4(+) T cells using the clonotypic TCR in vivo, but failed to mediate bystander suppression and did not prevent Th17 cells using nonclonotypic TCRs from accumulating in joint-draining lymph nodes of arthritic mice. These studies indicate that the availability of Tregs with diverse TCR specificities can be crucial to their activity in autoimmune arthritis.  相似文献   

7.
Myeloid dendritic cells (mDCs) are the antigen-presenting cells best capable of promoting peripheral induction of regulatory T cells (Tregs), and are among the first targets of HIV. It is thus important to understand whether HIV alters their capacity to promote Treg conversion. Monocyte-derived DCs (moDCs) from uninfected donors induced a Treg phenotype (CD25(+)FOXP3(+)) in autologous conventional T cells. These converted FOXP3(+) cells suppressed the proliferation of responder T cells similarly to circulating Tregs. In contrast, the capacity of moDCs to induce CD25 or FOXP3 was severely impaired by their in vitro infection with CCR5-utilizing virus. MoDC exposure to inactivated HIV was sufficient to impair FOXP3 induction. This DC defect was not dependent on IL-10, TGF-β or other soluble factors, but was due to preferential killing of Tregs by HIV-exposed/infected moDCs, through a caspase-dependent pathway. Importantly, similar results were obtained with circulating primary myeloid DCs. Upon infection in vitro, these mDCs also killed Treg through mechanisms at least partially caspase-dependent, leading to a significantly lower proportion of induced Tregs. Taken together, our data suggest that Treg induction may be defective when DCs are exposed to high levels of virus, such as during the acute phase of infection or in AIDS patients.  相似文献   

8.
Studying the activity of homogeneous regulatory T cell (Treg) populations will advance our understanding of their mechanisms of action and their role in human disease. Although isolating human Tregs exhibiting low expression of CD127 markedly increases purity, the resulting Treg populations are still heterogeneous. To examine the complexity of the Tregs defined by the CD127 phenotype in comparison with the previously described CD4(+)CD25(hi) subpopulations, we subdivided the CD25(hi) population of memory Tregs into subsets based on expression of CD127 and HLA-DR. These subsets exhibited differences in suppressive capacity, ability to secrete IL-10 and IL-17, Foxp3 gene methylation, cellular senescence, and frequency in neonatal and adult blood. The mature, short telomere, effector CD127(lo)HLA-DR(+) cells most strongly suppressed effector T cells within 48 h, whereas the less mature CD127(lo)HLA-DR(-) cells required 96 h to reach full suppressive capacity. In contrast, whereas the CD127(+)HLA-DR(-) cells also suppressed proliferation of effector cells, they could alternate between suppression or secretion of IL-17 depending upon the stimulation signals. When isolated from patients with multiple sclerosis, both the nonmature and the effector subsets of memory CD127(lo) Tregs exhibited kinetically distinct defects in suppression that were evident with CD2 costimulation. These data demonstrate that natural and not induced Tregs are less suppressive in patients with multiple sclerosis.  相似文献   

9.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

10.
Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.  相似文献   

11.
Lymphocyte differentiation from naive CD4(+) T cells into mature Th1, Th2, Th17, or T regulatory cell (Treg) phenotypes has been considered end stage in character. In this study, we demonstrate that dendritic cells (DCs) activated with a novel immune modulator B7-DC XAb (DC(XAb)) can reprogram Tregs into T effector cells. Down-regulation of FoxP3 expression after either in vitro or in vivo Treg-DC(XAb) interaction is Ag-specific, IL-6-dependent, and results in the functional reprogramming of the mature T cell phenotype. The reprogrammed Tregs cease to express IL-10 and TGFbeta, fail to suppress T cell responses, and gain the ability to produce IFN-gamma, IL-17, and TNF-alpha. The ability of IL-6(+) DC(XAb) and the inability of IL-6(-/-) DC(XAb) vaccines to protect animals from lethal melanoma suggest that exogenously modulated DC can reprogram host Tregs. In support of this hypothesis and as a test for Ag specificity, transfer of DC(XAb) into RIP-OVA mice causes a break in immune tolerance, inducing diabetes. Conversely, adoptive transfer of reprogrammed Tregs but not similarly treated CD25(-) T cells into naive RIP-OVA mice is also sufficient to cause autoimmune diabetes. Yet, treatment of normal mice with B7-DC XAb fails to elicit generalized autoimmunity. The finding that mature Tregs can be reprogrammed into competent effector cells provides new insights into the plasticity of T cell lineage, underscores the importance of DC-T cell interaction in balancing immunity with tolerance, points to Tregs as a reservoir of autoimmune effectors, and defines a new approach for breaking tolerance to self Ags as a strategy for cancer immunotherapy.  相似文献   

12.
Infectious tolerance is a term generally assigned to the process through which regulatory T cells (Tregs) transfer immunoregulatory properties to other T cells. In this study, we demonstrated that a similar process applies to human dendritic cells (DCs), albeit through a different mechanism. We induced and cloned proinsulin-specific Tregs using tolerogenic DCs and investigated mechanisms by which induced Ag-specific regulatory T cells (iaTregs) endorse the suppressive effects. iaTregs expressed FOXP3, programmed death-1, and membrane-bound TGF-β and upregulated IL-10 and CTLA-4 after stimulation with the cognate Ag. The iaTregs suppressed effector T cells only when both encountered the cognate Ags on the same APCs (linked suppression). This occurred independently of IL-10, TGF-β, programmed death-1, or CTLA-4. Instead, iaTregs used a granzyme B-mediated mechanism to kill B cells and monocytes, whereas proinflammatory DCs that resisted being killed were induced to upregulate the inhibitory receptors B7 (family) homolog 3 and ICOS ligand. These re-educated mature monocyte-derived dendritic cells (mDCs) suppressed effector T cells and induced IL-10-producing cells from the naive T cell pool. Our data indicated that human tolerogenic DCs confer infectious tolerance by inducing Ag-specific Tregs, which, in turn, re-educate proinflammatory mature DCs into DCs with regulatory properties.  相似文献   

13.

Background

Cancer vaccines are designed to activate and enhance cancer-antigen-targeted T cells that are suppressed through multiple mechanisms of immune tolerance in cancer-bearing hosts. T regulatory cell (Treg) suppression of tumor-specific T cells is one barrier to effective immunization. A second mechanism is the deletion of high avidity tumor-specific T cells, which leaves a less effective low avidity tumor specific T cell repertoire available for activation by vaccines. Treg depleting agents including low dose cyclophosphamide (Cy) and antibodies that deplete CD25-expressing Tregs have been used with limited success to enhance the potency of tumor-specific vaccines. In addition, few studies have evaluated mechanisms that activate low avidity cancer antigen-specific T cells. Therefore, we developed high and low avidity HER-2/neu-specific TCR transgenic mouse colonies specific for the same HER-2/neu epitope to define the tolerance mechanisms that specifically affect high versus low avidity tumor-specific T cells.

Methodology/Principal Findings

High and low avidity CD8+ T cell receptor (TCR) transgenic mice specific for the breast cancer antigen HER-2/neu (neu) were developed to provide a purified source of naïve, tumor-specific T cells that can be used to study tolerance mechanisms. Adoptive transfer studies into tolerant FVB/N-derived HER-2/neu transgenic (neu-N) mice demonstrated that high avidity, but not low avidity, neu-specific T cells are inhibited by Tregs as the dominant tolerizing mechanism. High avidity T cells persisted, produced IFNγ, trafficked into tumors, and lysed tumors after adoptive transfer into mice treated with a neu-specific vaccine and low dose Cy to deplete Tregs. Analysis of Treg subsets revealed a Cy-sensitive CD4+Foxp3+CD25low tumor-seeking migratory phenotype, characteristic of effector/memory Tregs, and capable of high avidity T cell suppression.

Conclusion/Significance

Depletion of CD25low Tregs allows activation of tumor-clearing high avidity T cells. Thus, the development of agents that specifically deplete Treg subsets should translate into more effective immunotherapies while avoiding autoimmunity.  相似文献   

14.
15.
Zhang JY  Song CH  Shi F  Zhang Z  Fu JL  Wang FS 《PloS one》2010,5(11):e13869

Background

Treatment with nucleotide analogs is known to be effective in inhibiting HBV replication; however, patients with chronic hepatitis B (CHB) often show a wide range of clinical responses to these drugs. Therefore, the identification of an early immunologic marker associated with the clinical outcomes in such cases is critical for the improved clinical management. In our study, we aimed to investigate whether the viral load in CHB patients affected the ratio of the number of regulatory T cells (Tregs) to the number of interleukin-17-producing helper (Th17) cells. Further, we evaluated the clinical implications of the alterations in this ratio.

Methodology/Principal Findings

Nine patients seropositive for hepatitis B e antigen received entecavir monotherapy for 12 months and the percentages of Tregs and Th17 cells as well as the HBV-specific IL-17 productions in these patients were longitudinally analyzed. The entecavir-induced suppression of HBV replication was accompanied by a rapid increase in the number of Th17 cells, together with a decrease in Treg cells, which lead to a significant reduction of Treg/Th17 ratios. In addition, peripheral blood mononuclear cells (PBMCs) exhibited a decreased IL-17 production upon stimulation with the HBV core antigen in vitro.

Conclusions

The inhibition of viral replication results in an increase in Th17 cells and concomitant decrease in Treg cells. This imbalance of Treg cells to Th17 cells might have an important role in HBV persistence during entecavir treatment.  相似文献   

16.
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4?+?T cells producing IL-17 and CD4?+?CD25highFoxP3?+?Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4?+?CD25highFoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients.  相似文献   

17.
Dendritic cells (DCs) are important antigen-presenting cells (APCs) that can prime naive T cells and control adaptive immune responses with respect to magnitude, memory and self-tolerance. Understanding the biology of these cells is central to the development of new generation immunotherapies for cancer and chronic infections. This review presents a brief overview of DC biology and of the preparation and use of DC-based vaccines.  相似文献   

18.
Th cells can be subdivided into IFN-gamma-secreting Th1, IL-4/IL-5-secreting Th2, and IL-17-secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H(+)K(+)-ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, could moderately suppress Th2 cells, but could suppress Th17-induced disease only at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in humans.  相似文献   

19.
IL-6 is a proinflammatory cytokine and its overproduction is implicated in a variety of inflammatory disorders. Recent in vitro analyses suggest that IL-6 is a key cytokine that determines the balance between Foxp3(+) regulatory T cells (Tregs) and Th17 cells. However, it remains unclear whether excessive IL-6 production in vivo alters the development and function of Foxp3(+) Tregs. In this study, we analyzed IL-6 transgenic (Tg) mice in which serum IL-6 levels are constitutively elevated. Interestingly, in IL-6 Tg mice, whereas peripheral lymphoid organs were enlarged, and T cells exhibited activated phenotype, Tregs were not reduced but rather increased compared with wild-type mice. In addition, Tregs from Tg mice normally suppressed proliferation of naive T cells in vitro. Furthermore, Tregs cotransferred with naive CD4 T cells into SCID-IL-6 Tg mice inhibited colitis as successfully as those transferred into control SCID mice. These results indicate that overproduction of IL-6 does not inhibit development or function of Foxp3(+) Tregs in vivo. However, when naive CD4 T cells alone were transferred, Foxp3(+) Tregs retrieved from SCID-IL-6 Tg mice were reduced compared with SCID mice. Moreover, the Helios(-) subpopulation of Foxp3(+) Tregs, recently defined as extrathymic Tregs, was significantly reduced in IL-6 Tg mice compared with wild-type mice. Collectively, these results suggest that IL-6 overproduced in vivo inhibits inducible Treg generation from naive T cells, but does not affect the development and function of natural Tregs.  相似文献   

20.
CD4+CD25+Foxp3+ regulatory T cells (Tregs) restrict inflammatory responses to self and nonself. Aberrant Treg activity is pathologic: Insufficient Treg activity is implicated in autoimmunity, allergy, and graft-versus-host-disease; overabundant activity is implicated in chronic infection and cancer. Tregs require IL-2 for their expansion and acquisition/execution of suppressor function; however, because Tregs cannot produce IL-2, they depend on IL-2 from an exogenous source. Until now, that IL-2 source had not been established. We asked whether dendritic cells (DCs) could supply IL-2 to Tregs and, if so, what was required for that delivery. We used flow cytometry, IL-2 ELISPOT, RT-qPCR, and IL-2 promoter-driven reporter assays to measure intracytoplasmic IL-2, secreted protein, IL-2 message and IL-2 promoter activity in bone marrow-derived (BMDC) and splenic DCs. We examined conjugate formation between Tregs, conventional CD4+ cells, and IL-2-expressing DCs. We measured Treg levels of CD25, Foxp3, and suppressor function after co-culture with IL-2 sufficient and IL-2−/− DCs. We generated IL-2-mCherry-expressing DCs and used epifluorescence microscopy and flow cytometry to track IL-2 transfer to Tregs and test requirements for transfer. Between 0.7 to 2.4% of DCs constitutively produced IL-2 and diverted IL-2 secretion to Tregs by preferentially forming conjugates with them. Uptake of DC IL-2 by Tregs required cell-cell contact and CD25. Tregs increased levels of CD25 and Foxp3 from baseline and showed greater suppressor function when co-cultured with IL-2-sufficient DCs, but not when co-cultured with IL-2−/− DCs. Exogenous IL-2, added in excess of 500 U/ml to co-cultures with IL-2−/− DCs, restored Treg suppressor function. These data support a model of juxtacrine delivery of IL-2 from DCs to Tregs and suggest that a subset of DCs modulates Treg function through controlled, spatial delivery of IL-2. Knowledge of how DCs regulate Tregs should be integrated into the design of interventions intended to alter Treg function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号