首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-κB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-κB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-κB inhibitors to rheumatoid arthritis therapy.  相似文献   

2.
Rapid progress has been made in exploring the connections between the skeletal system and the immune system over the past decade. Bone tissue forms developmental niches for hematopoietic stem cells, and activated immune cells are involved in bone metabolism regulation and are potent mediators of osteoporosis and bone erosion under pathological conditions. The interdisciplinary field of osteoimmunology has emerged to pool the knowledge of the interdependence of these two systems, including the shared ligands and receptors, their crosstalk and interaction, and common intracellular signaling pathways with bidirectional influence. The receptor activator of nuclear factor-kappa B(RANK)/RANK ligand(RANKL)/osteoprotegerin(OPG) triad is the key vinculum, with multifaceted potency, being not only essential for osteoclastogenesis but also critical for lymph node organogenesis and lymphopoiesis as well as for immune regulation. In this review, we summarize the progress in this area, focusing on those aspects of interest concerning rheumatic diseases.  相似文献   

3.
Osteoclasts are multinucleated cells that play a crucial role in bone resorption, and are formed by the fusion of mononuclear osteoclasts derived from osteoclast precursors of the macrophage lineage. Compounds that specifically target functional osteoclasts would be ideal candidates for anti-resorptive agents for clinical applications. In the present study, we investigated the effects of luteolin, a flavonoid, on the regulation of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, functions and signaling pathway. Addition of luteolin to a coculture system of mouse bone marrow cells and ST2 cells in the presence of 10−8 M 1α,25(OH)2D3 caused significant inhibition of osteoclastogenesis. Luteolin had no effects on the 1α,25(OH)2D3-induced expressions of RANKL, osteoprotegerin and macrophage colony-stimulating factor mRNAs. Next, we examined the direct effects of luteolin on osteoclast precursors using bone marrow macrophages and RAW264.7 cells. Luteolin completely inhibited RANKL-induced osteoclast formation. Moreover, luteolin inhibited the bone resorption by mature osteoclasts accompanied by the disruption of their actin rings, and these effects were reversely induced by the disruption of the actin rings in mature osteoclasts. Finally, we found that luteolin inhibited RANKL-induced osteoclastogenesis through the suppression of ATF2, downstream of p38 MAPK and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) expression, respectively. Taken together, the present results indicate that naturally occurring luteolin has inhibitory activities toward both osteoclast differentiation and functions through inhibition of RANKL-induced signaling pathway as well as actin ring disruption, respectively.  相似文献   

4.
Bone-resorbing osteoclasts are formed from hemopoietic cells of the monocyte–macrophage lineage under the control of bone-forming osteoblasts. We have cloned an osteoblast-derived factor essential for osteoclastogenesis, the receptor activator of NF-κB ligand (RANKL). Synovial fibroblasts and activated T lymphocytes from patients with rheumatoid arthritis also express RANKL, which appears to trigger bone destruction in rheumatoid arthritis as well. Recent studies have shown that T lymphocytes produce cytokines other than RANKL such as IL-17, granulocyte–macrophage colony-stimulating factor and IFN-γ, which have powerful regulatory effects on osteoclastogenesis. The possible roles of RANKL and other cytokines produced by T lymphocytes in bone destruction are described.  相似文献   

5.
6.
Tumor necrosis factor-α (TNF-α) is a polypeptide cytokine that has been associated with muscle wasting and weakness in inflammatory disease. Despite its potential importance in muscle pathology, the direct effects of TNF-α on skeletal muscle have remained undefined until recently. Studies of cultured muscle cells indicate that TNF-α disrupts the differentiation process and can promote catabolism in mature cells. The latter response appears to be mediated by reactive oxygen species and nuclear factor-κB which upregulate ubiquitin/proteasome activity. This commentary outlines our current understanding of TNF-α effects on skeletal muscle and the mechanism of TNF-α action.  相似文献   

7.
Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of NF-κB, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit TNF-α-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and TNF-α.  相似文献   

8.
Osteoimmunology: interactions of the immune and skeletal systems   总被引:7,自引:0,他引:7  
Bone is a dynamic tissue that provides mechanical support, physical protection, and enables movement. Bone also serves as a storage site for minerals and is where blood cells are produced. Bone homeostasis is regulated by the balance between bone formation and resorption, and involves the coordinated action of osteoblasts and osteoclasts. Osteoblasts are bone-forming cells that secrete organic matrix molecules, while osteoclasts are derived from hematopoietic precursors and resorb bone matrix. Although osteoblasts and osteoclasts are the major regulators of bone metabolism and are regulated by the local microenvironment, it has recently come to be appreciated that skeletal system homeostasis is greatly influenced by components of the immune system. For example, some pathological bone resorption observed under inflammatory conditions has been shown to be due, in part, to direct and indirect effects of activated T cells on osteoclasts. In this regard, we would like to review current progress and perspectives in "osteoimmunology", an interdisciplinary research principle governing the cross-talk between the bone and immune systems. Better understanding of how the osteoimmune system operates in normal and pathological situations is likely to lay the groundwork for future therapies for the variety of diseases that affect both bone and the immune system.  相似文献   

9.
10.
11.
Osteoclast activation is a critical cellular process for pathological bone resorption, such as erosions in rheumatoid arthritis (RA) or generalized bone loss. Among many factors triggering excessive osteoclast activity, cytokines such as IL-1 or tumour necrosis factor (TNF)-α play a central role. New members of the TNF receptor ligand family (namely receptor activator of nuclear factor-κB [RANK] and RANK ligand [RANKL]) have been discovered whose cross-interaction is mandatory for the differentiation of osteoclasts from hemopoietic precursors, in both physiological and pathological situations. Osteoprotegerin, a decoy receptor which blocks this interaction, decreases osteoclast activity and could have a fascinating therapeutic potential in conditions associated with upregulated bone resorption.  相似文献   

12.
The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of NF-κB (RANK) system plays an important role in the pathogenesis of metabolic bone diseases. This study is aimed to investigate effects and mechanisms of RANKL gene silencing on the function of human osteoblast-like MG63 cells by RNA interference using a lentivirus-based small hairpin RNA (vshRNA) delivery system. After RANKL-specific vshRNAs were designed, constructed and transfected into MG63 cells, changes in the expression levels of RANKL mRNA and protein were determined by Western blot and RT-PCR, respectively; changes in cell activity and cell cycle distribution were examined by thiazolyl blue tetrazolium bromide assay and flow cytometry. The expression levels of RANKL mRNA and protein in MG63 cells were reduced by transferring RANKL-specific vshRNAs. Compared to cells infected with negative control virus, the proliferation of cells infected with the recombinant virus was more likely to be inhibited. Furthermore, the cell cycle of MG63 was altered, with the number of G1 phase cells decreasing significantly (P < 0.05). RANKL-specific vshRNAs can significantly inhibit the expression of the target gene in MG63 cells. RANKL gene silencing can inhibit the proliferation and alter the cell cycle of MG63 cells. Our findings suggest that RANKL might play an important role in the regulation of growth and cell cycle of MG63 cells.  相似文献   

13.
Cancer cells metastasized to bone induce osteoclastogenesis for bone destruction. Coculture of either mouse melanoma B16 or breast cancer Balb/c-MC cells with mouse bone marrow cells (BMCs) induced osteoclast-like cells, which were not observed when cancer cells were segregated from BMCs. Osteoclast differentiation factor (ODF), also known as receptor activator of NF-kappaB ligand (RANKL), is a direct mediator of many osteotropic factors. Neither BMCs, B16 nor Balb/c-MC cells alone expressed ODF mRNA. However, coculture of these cancer cells with BMCs induced ODF expression, which was prevented by indomethacin. Moreover, the coculture with cancer cells inhibited secretion of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF), an inhibitory decoy receptor for ODF, from BMCs. Thus, enhanced osteoclastogenesis in the presence of cancer cells might be due to an increase in ODF activity. These results suggest that interactions between cancer cells and BMCs induce ODF expression and suppress OPG/OCIF level in metastatic foci resulting in pathological osteoclastogenesis for bone destruction.  相似文献   

14.
15.
16.
17.
Bone metastasis of breast cancer typically leads to osteolysis, which causes severe pathological bone fractures and hypercalcemia. Bone homeostasis is skillfully regulated through osteoblasts and osteoclasts. Bone loss with bone metastasis of breast cancer may be due to both activation of osteoclastic bone resorption and suppression of osteoblastic bone formation. This study was undertaken to determine whether the novel curcumin analogue UBS109 has preventive effects on bone loss induced by breast cancer cell bone metastasis. Nude mice were inoculated with breast cancer MDA-MB-231 bone metastatic cells (106 cells/mouse) into the head of the right and left tibia. One week after inoculation, the mice were treated with control (vehicle), oral administration (p.o.) of UBS109 (50 or 150 mg/kg body weight), or intraperitoneal administration (i.p.) of UBS109 (10 or 20 mg/kg body weight) once daily for 5 days per week for 7 weeks. After UBS109 administration for 7 weeks, hind limbs were assessed using an X-ray diagnosis system and hematoxylin and eosion staining to determine osteolytic destruction. Bone marrow cells obtained from the femurs and tibias were cultured to estimate osteoblastic mineralization and osteoclastogenesis ex vivo and in vitro. Remarkable bone loss was demonstrated in the tibias of mice inoculated with breast cancer MDA-MB-231 bone metastatic cells. This bone loss was prevented by p.o. administration of UBS109 (50 and 150 mg/kg body weight) and i.p. treatment of UBS109 (10 and 20 mg/kg) in vivo. Culture of bone marrow cells obtained from the bone tissues of mice with breast cancer cell bone metastasis showed suppressed osteoblastic mineralization and stimulated osteoclastogenesis ex vivo. These changes were not seen after culture of the bone marrow cells obtained from mice treated with UBS109. Moreover, UBS109 was found to stimulate osteoblastic mineralization and suppress lipopolysaccharide (LPS)-induced osteoclastogenesis in bone marrow cells obtained from normal nude mice in vitro. These findings suggest that the novel curcumin analogue UBS109 prevents breast cancer cell bone metastasis-induced bone loss by stimulating osteoblastic mineralization and suppressing osteoclastogenesis.  相似文献   

18.
The deposition of monosodium urate (MSU) crystals in synovial fluid and tissue leads to gouty arthritis frequently associated with synovial inflammation and bone erosions. The cellular mechanism that links MSU crystals to an increased number of osteoclasts has not yet been fully understood. In a recent issue of Arthritis Research & Therapy Lee and colleagues proposed that bone destruction in chronic gouty arthritis is at least in part dependent on expression by T cells of receptor activator of NF-κB ligand (RANKL). The authors showed that pro-resorptive cytokines such as IL-1β, IL-6, and TNFα are expressed within tophi and stromal infiltrates. In vitro stimulation with MSU crystals revealed monocytes as a source for these cytokines, whereas T cells produce RANKL, the major trigger of osteoclastogenesis.  相似文献   

19.
We investigated the therapeutic potential and mechanism of action of IFN-β protein for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis was induced in DBA/1 mice. At the first clinical sign of disease, mice were given daily injections of recombinant mouse IFN-β or saline for 7 days. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were assessed histologically 8 days after the onset of arthritis. Proteoglycan depletion was determined by safranin O staining. Expression of cytokines, receptor activator of NF-κB ligand, and c-Fos was evaluated immunohistochemically. The IL-1-induced expression of IL-6, IL-8, and granulocyte/macrophage-colony-stimulating factor (GM-CSF) was studied by ELISA in supernatant of RA and osteoarthritis fibroblast-like synoviocytes incubated with IFN-β. We also examined the effect of IFN-β on NF-κB activity. IFN-β, at 0.25 μg/injection and higher, significantly reduced disease severity in two experiments, each using 8–10 mice per treatment group. IFN-β-treated animals displayed significantly less cartilage and bone destruction than controls, paralleled by a decreased number of positive cells of two gene products required for osteoclastogenesis, receptor activator of NF-κB ligand and c-Fos. Tumor necrosis factor α and IL-6 expression were significantly reduced, while IL-10 production was increased after IFN-β treatment. IFN-β reduced expression of IL-6, IL-8, and GM-CSF in RA and osteoarthritis fibroblast-like synoviocytes, correlating with reduced NF-κB activity. The data support the view that IFN-β is a potential therapy for RA that might help to diminish both joint inflammation and destruction by cytokine modulation.  相似文献   

20.

Introduction  

The relationship of circulating levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) with the expression of these molecules in bone has not been established. The objective of this study was to measure, in humans, the serum levels of RANKL and OPG, and the corresponding levels in bone of mRNA encoding these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号